domain of y=(5x)/(3-xsqrt(x))
|
domain\:y=\frac{5x}{3-x\sqrt{x}}
|
periodicity of f(x)=2tan((pi)/2 x)
|
periodicity\:f(x)=2\tan(\frac{\pi}{2}x)
|
inverse of \sqrt[3]{x+13}
|
inverse\:\sqrt[3]{x+13}
|
slope intercept of 5y=2x
|
slope\:intercept\:5y=2x
|
slope of x+y=-3
|
slope\:x+y=-3
|
domain of f(x)=(4x)/(x-5)
|
domain\:f(x)=\frac{4x}{x-5}
|
shift f(x)=5sin(2/3 x-2/9 pi)
|
shift\:f(x)=5\sin(\frac{2}{3}x-\frac{2}{9}\pi)
|
parity y=(cos(3x))^x
|
parity\:y=(\cos(3x))^{x}
|
domain of (2x^2+8x-24)/(x^2+x-12)
|
domain\:\frac{2x^{2}+8x-24}{x^{2}+x-12}
|
inverse of f(x)=(12)/x-18
|
inverse\:f(x)=\frac{12}{x}-18
|
asymptotes of f(x)= 1/(x^2-1)
|
asymptotes\:f(x)=\frac{1}{x^{2}-1}
|
extreme points of f(x)=2x^3-6x^2+30
|
extreme\:points\:f(x)=2x^{3}-6x^{2}+30
|
intercepts of 1/9 x^4-4/9 x^3
|
intercepts\:\frac{1}{9}x^{4}-\frac{4}{9}x^{3}
|
inverse of f(x)=x^2+4xx>=-2
|
inverse\:f(x)=x^{2}+4xx\ge\:-2
|
intercepts of f(x)=4x^2-8x-1
|
intercepts\:f(x)=4x^{2}-8x-1
|
inverse of g(x)= 1/x-1
|
inverse\:g(x)=\frac{1}{x}-1
|
intercepts of y=-3x-9
|
intercepts\:y=-3x-9
|
monotone intervals f(x)=x^3-1
|
monotone\:intervals\:f(x)=x^{3}-1
|
asymptotes of f(x)=(x^3+2x+1)/(x^2-5x)
|
asymptotes\:f(x)=\frac{x^{3}+2x+1}{x^{2}-5x}
|
domain of f(x)=(300)/(1+0.03r^2)
|
domain\:f(x)=\frac{300}{1+0.03r^{2}}
|
monotone intervals (x^3)/(x-1)
|
monotone\:intervals\:\frac{x^{3}}{x-1}
|
asymptotes of f(x)=(x^2-1)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}-1}{x^{2}-4}
|
domain of f(x)=(3x+15)/(5x)
|
domain\:f(x)=\frac{3x+15}{5x}
|
range of 10x-9
|
range\:10x-9
|
monotone intervals ((x-2)(x+2)(x+4))
|
monotone\:intervals\:((x-2)(x+2)(x+4))
|
inverse of f(x)= x/2-1
|
inverse\:f(x)=\frac{x}{2}-1
|
asymptotes of f(x)=((8e^x))/((e^x-2))
|
asymptotes\:f(x)=\frac{(8e^{x})}{(e^{x}-2)}
|
amplitude of cos(2t)
|
amplitude\:\cos(2t)
|
domain of f(x)=sqrt(5x+7)
|
domain\:f(x)=\sqrt{5x+7}
|
asymptotes of f(x)=(12x)/(3x^2+1)
|
asymptotes\:f(x)=\frac{12x}{3x^{2}+1}
|
inverse of f(x)= 3/x-2
|
inverse\:f(x)=\frac{3}{x}-2
|
slope of y=-5x-3
|
slope\:y=-5x-3
|
domain of y=f(x)=xsqrt(4-x^2)
|
domain\:y=f(x)=x\sqrt{4-x^{2}}
|
line (1,2)(4,4)
|
line\:(1,2)(4,4)
|
parity f(x)=-x^2+10
|
parity\:f(x)=-x^{2}+10
|
inverse of f(x)=2^{10^x}
|
inverse\:f(x)=2^{10^{x}}
|
domain of f(x)=(2x^2-x-9)/(x^2+1)
|
domain\:f(x)=\frac{2x^{2}-x-9}{x^{2}+1}
|
inverse of 1.6x+7.25
|
inverse\:1.6x+7.25
|
domain of f(x)=(2x+1)/(x^2+x-2)
|
domain\:f(x)=\frac{2x+1}{x^{2}+x-2}
|
domain of f(x)= 1/(sqrt(2x-3))
|
domain\:f(x)=\frac{1}{\sqrt{2x-3}}
|
slope of 6y-8x=54
|
slope\:6y-8x=54
|
line 35L\times-8
|
line\:35L\times\:-8
|
midpoint (3,0)(0,2)
|
midpoint\:(3,0)(0,2)
|
domain of f(x)=(x/2)/2
|
domain\:f(x)=\frac{\frac{x}{2}}{2}
|
inverse of f(x)=((3x-5))/7
|
inverse\:f(x)=\frac{(3x-5)}{7}
|
periodicity of sin(x-pi)
|
periodicity\:\sin(x-\pi)
|
domain of f(x)=(sqrt(x+3))/(sqrt(x-4))
|
domain\:f(x)=\frac{\sqrt{x+3}}{\sqrt{x-4}}
|
parallel y=-x-9,\at (-4,6)
|
parallel\:y=-x-9,\at\:(-4,6)
|
range of sqrt(4x-x^2)
|
range\:\sqrt{4x-x^{2}}
|
range of (27x)/(x^2+9)
|
range\:\frac{27x}{x^{2}+9}
|
range of 5^x+3
|
range\:5^{x}+3
|
midpoint (-3,-2)(2,3)
|
midpoint\:(-3,-2)(2,3)
|
inverse of f(x)=\sqrt[5]{2(x-8)+7}
|
inverse\:f(x)=\sqrt[5]{2(x-8)+7}
|
inflection points of (x^2-7)^3
|
inflection\:points\:(x^{2}-7)^{3}
|
extreme points of x^4-12x^3+48x^2-64x
|
extreme\:points\:x^{4}-12x^{3}+48x^{2}-64x
|
domain of f(x)= 4/(3+x)
|
domain\:f(x)=\frac{4}{3+x}
|
symmetry y=(x+2)^2
|
symmetry\:y=(x+2)^{2}
|
domain of x^3-6x^2-15x+3
|
domain\:x^{3}-6x^{2}-15x+3
|
asymptotes of f(x)= 4/(x-5)
|
asymptotes\:f(x)=\frac{4}{x-5}
|
domain of 1/(x^3+4x)
|
domain\:\frac{1}{x^{3}+4x}
|
range of y= x/(x^2+x-6)
|
range\:y=\frac{x}{x^{2}+x-6}
|
inflection points of f(x)=x^3-6x^2-36x
|
inflection\:points\:f(x)=x^{3}-6x^{2}-36x
|
intercepts of f(x)=y^2-x-25=0
|
intercepts\:f(x)=y^{2}-x-25=0
|
parallel y=-9x+9
|
parallel\:y=-9x+9
|
asymptotes of e^{-x}+4
|
asymptotes\:e^{-x}+4
|
parity (4x^2-5)/(2x^3+x)
|
parity\:\frac{4x^{2}-5}{2x^{3}+x}
|
inverse of f(x)=3x^2-3
|
inverse\:f(x)=3x^{2}-3
|
inverse of y=(2x-1)/(x+3)
|
inverse\:y=\frac{2x-1}{x+3}
|
domain of (2x-16)/(x^2-16x)
|
domain\:\frac{2x-16}{x^{2}-16x}
|
domain of sin(3x)
|
domain\:\sin(3x)
|
parity cos(4x)
|
parity\:\cos(4x)
|
asymptotes of (2x-1)/(3x^2)
|
asymptotes\:\frac{2x-1}{3x^{2}}
|
inverse of f(x)=4x+16
|
inverse\:f(x)=4x+16
|
domain of f(x)=((x))/(sqrt(4-x^2))
|
domain\:f(x)=\frac{(x)}{\sqrt{4-x^{2}}}
|
inverse of 1/(x+10)
|
inverse\:\frac{1}{x+10}
|
inverse of f(x)=y^2-4y+3
|
inverse\:f(x)=y^{2}-4y+3
|
y=-3x-1
|
y=-3x-1
|
shift 3cos(x)
|
shift\:3\cos(x)
|
critical points of (x^2-1)/(x^3)
|
critical\:points\:\frac{x^{2}-1}{x^{3}}
|
inflection points of f(x)=-2/5 x^6+5x^4
|
inflection\:points\:f(x)=-\frac{2}{5}x^{6}+5x^{4}
|
critical points of f(x)=xsqrt(9-x)
|
critical\:points\:f(x)=x\sqrt{9-x}
|
domain of f(x)= 1/(sqrt(x^2-1))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-1}}
|
domain of f(x)=4sqrt(x+4)-5
|
domain\:f(x)=4\sqrt{x+4}-5
|
line (0,2)(2,0)
|
line\:(0,2)(2,0)
|
extreme points of f(x)=3x^2
|
extreme\:points\:f(x)=3x^{2}
|
intercepts of f(x)=(x^2-6x-40)/(x^2+7x)
|
intercepts\:f(x)=\frac{x^{2}-6x-40}{x^{2}+7x}
|
midpoint (3,4),(11,17)
|
midpoint\:(3,4),(11,17)
|
inverse of (e^x)/(1+3e^x)
|
inverse\:\frac{e^{x}}{1+3e^{x}}
|
symmetry x=-8y^2
|
symmetry\:x=-8y^{2}
|
inverse of f(x)=10x
|
inverse\:f(x)=10x
|
slope of (-2,-3) 5/2
|
slope\:(-2,-3)\frac{5}{2}
|
asymptotes of f(x)=(2x-4)/(2x^2-1)
|
asymptotes\:f(x)=\frac{2x-4}{2x^{2}-1}
|
range of-4+(x-2)^2
|
range\:-4+(x-2)^{2}
|
slope intercept of m=-4(0,8)
|
slope\:intercept\:m=-4(0,8)
|
range of-ln(x^2-1)
|
range\:-\ln(x^{2}-1)
|
midpoint (1,2)(6,8)
|
midpoint\:(1,2)(6,8)
|
distance (-3.36,-3.355)(0,0)
|
distance\:(-3.36,-3.355)(0,0)
|
range of sqrt(81-x^2)
|
range\:\sqrt{81-x^{2}}
|
critical points of f(x)=25x^3-3x
|
critical\:points\:f(x)=25x^{3}-3x
|
monotone intervals f(x)=-3+6x-x^3
|
monotone\:intervals\:f(x)=-3+6x-x^{3}
|