f(x)=(2x^2-3x)/(x^2-x-12)
|
f(x)=\frac{2x^{2}-3x}{x^{2}-x-12}
|
f(x)=(x^2-4x)/(x^2-16)
|
f(x)=\frac{x^{2}-4x}{x^{2}-16}
|
P(t)=-1701t^2+80000t+10000
|
P(t)=-1701t^{2}+80000t+10000
|
h(x)= x/(x^2+5)
|
h(x)=\frac{x}{x^{2}+5}
|
y=-3x^2+12x-4
|
y=-3x^{2}+12x-4
|
inverse of-1/z 1/(z-1)
|
inverse\:-\frac{1}{z}\frac{1}{z-1}
|
f(x)=(5x)/(4+3x^2)
|
f(x)=\frac{5x}{4+3x^{2}}
|
f(1/4)=4x^2+2x-2
|
f(\frac{1}{4})=4x^{2}+2x-2
|
f(x)=(1-e^x)/(ln(2-e^x))
|
f(x)=\frac{1-e^{x}}{\ln(2-e^{x})}
|
f(x)=\sqrt[3]{(x^3-2+1/(x^2))(3x-4x^4)}
|
f(x)=\sqrt[3]{(x^{3}-2+\frac{1}{x^{2}})(3x-4x^{4})}
|
y=cos(x-pi/3)
|
y=\cos(x-\frac{π}{3})
|
f(x)=(2x-5)/(3x+2)
|
f(x)=\frac{2x-5}{3x+2}
|
f(x)=(e^{-x^2})/x
|
f(x)=\frac{e^{-x^{2}}}{x}
|
h(x)=(x^2-2x)^2
|
h(x)=(x^{2}-2x)^{2}
|
f(x)=6x-2sqrt(x)+8
|
f(x)=6x-2\sqrt{x}+8
|
y=-4x^2+12x+7
|
y=-4x^{2}+12x+7
|
inverse of f(x)=-x-10
|
inverse\:f(x)=-x-10
|
y=1+x^3
|
y=1+x^{3}
|
f(x)=sqrt(2/(x-1))
|
f(x)=\sqrt{\frac{2}{x-1}}
|
f(x)=x^2-7x-2
|
f(x)=x^{2}-7x-2
|
f(x)=(arcsin((1-x^2)/(2+x)))
|
f(x)=(\arcsin(\frac{1-x^{2}}{2+x}))
|
f(x)=1x+3
|
f(x)=1x+3
|
f(x)=1x+2
|
f(x)=1x+2
|
y=(ln(x))/(4x)
|
y=\frac{\ln(x)}{4x}
|
f(x)=sqrt(x+2)+sqrt(2-x)
|
f(x)=\sqrt{x+2}+\sqrt{2-x}
|
f(x)=cos(sqrt(2)arccos(x))
|
f(x)=\cos(\sqrt{2}\arccos(x))
|
f(x)=((x-2)(x+3))/(x+5)
|
f(x)=\frac{(x-2)(x+3)}{x+5}
|
inverse of 9/5 c+32
|
inverse\:\frac{9}{5}c+32
|
y=(x^4+1)/(x^2)
|
y=\frac{x^{4}+1}{x^{2}}
|
f(x)=-0.0241x^2+x+5.5
|
f(x)=-0.0241x^{2}+x+5.5
|
y=4^x-3
|
y=4^{x}-3
|
y= 1/(x-1)+2
|
y=\frac{1}{x-1}+2
|
f(s)= 1/(s+5)
|
f(s)=\frac{1}{s+5}
|
f(x)=(x^2-9)/(x-1)
|
f(x)=\frac{x^{2}-9}{x-1}
|
f(x)=x(3x^2-10x+7)
|
f(x)=x(3x^{2}-10x+7)
|
f(x)=-4x^2+2x-1
|
f(x)=-4x^{2}+2x-1
|
h(t)=-0.2t^2+2t+1
|
h(t)=-0.2t^{2}+2t+1
|
y=(x^5)/6+1/(10x^3),1<= x<= 3
|
y=\frac{x^{5}}{6}+\frac{1}{10x^{3}},1\le\:x\le\:3
|
domain of f(x)=(4x^2-4)/(x+1)
|
domain\:f(x)=\frac{4x^{2}-4}{x+1}
|
f(x)=(x-1)^2(3x+3)/x
|
f(x)=(x-1)^{2}\frac{3x+3}{x}
|
f(x)=-2-x^2
|
f(x)=-2-x^{2}
|
f(x)=(1/2 x^2-3x)*(2/3 x^3+x)
|
f(x)=(\frac{1}{2}x^{2}-3x)\cdot\:(\frac{2}{3}x^{3}+x)
|
y=5e^{-x^2}
|
y=5e^{-x^{2}}
|
f(x)=x^3-5x^2+2x-3
|
f(x)=x^{3}-5x^{2}+2x-3
|
g(x)=e^{x+1}
|
g(x)=e^{x+1}
|
h(x)=8x^2-8x+21
|
h(x)=8x^{2}-8x+21
|
log_{x}(2)
|
\log_{x}(2)
|
f(2)=-3^{x-3}
|
f(2)=-3^{x-3}
|
f(x)=x^4-25x^2
|
f(x)=x^{4}-25x^{2}
|
midpoint (-6,12)(2,-20)
|
midpoint\:(-6,12)(2,-20)
|
P(x)=x^5+5x^4-13x^3-56x^2-108x-144
|
P(x)=x^{5}+5x^{4}-13x^{3}-56x^{2}-108x-144
|
y=2(x+5)^2+3
|
y=2(x+5)^{2}+3
|
f(x)=x^{x^5}
|
f(x)=x^{x^{5}}
|
r(θ)=2tan(θ)sec(θ)
|
r(θ)=2\tan(θ)\sec(θ)
|
f(x)=xe^{-x/3}
|
f(x)=xe^{-\frac{x}{3}}
|
y= 3/5 x^5-5x^{-2}+ln(3x)
|
y=\frac{3}{5}x^{5}-5x^{-2}+\ln(3x)
|
f(x)=(3x)/(x-9)
|
f(x)=\frac{3x}{x-9}
|
f(x)=e^{(x^2)/4}
|
f(x)=e^{\frac{x^{2}}{4}}
|
f(x)=(5x^6+2x^3)^4
|
f(x)=(5x^{6}+2x^{3})^{4}
|
f(a)=a^2-13^a+40
|
f(a)=a^{2}-13^{a}+40
|
line (3,9)\land (0,5)
|
line\:(3,9)\land\:(0,5)
|
f(x)=x^{12}-6x^8+5x^4+2x^6-6x^2+1
|
f(x)=x^{12}-6x^{8}+5x^{4}+2x^{6}-6x^{2}+1
|
y=x^2-10x+3
|
y=x^{2}-10x+3
|
f(x)=(sqrt(x+9)-3)/x
|
f(x)=\frac{\sqrt{x+9}-3}{x}
|
f(x)= x/(3x+1)
|
f(x)=\frac{x}{3x+1}
|
f(x)=4-9x
|
f(x)=4-9x
|
y=-4sin(2)(x+pi/2)
|
y=-4\sin(2)(x+\frac{π}{2})
|
f(x)=(4x^3+3x^2)/x
|
f(x)=\frac{4x^{3}+3x^{2}}{x}
|
y=-1/(2x)
|
y=-\frac{1}{2x}
|
f(x)=(x^2+x)^{10}(2x+1)
|
f(x)=(x^{2}+x)^{10}(2x+1)
|
f(x)=-cot^2(x)csc(x)
|
f(x)=-\cot^{2}(x)\csc(x)
|
domain of f(x)=(x+4)/(x^2-8x+16)
|
domain\:f(x)=\frac{x+4}{x^{2}-8x+16}
|
asymptotes of (2x-6)/(x^2-4x+3)
|
asymptotes\:\frac{2x-6}{x^{2}-4x+3}
|
f(x)=(x^4-1)/(x^2-1)
|
f(x)=\frac{x^{4}-1}{x^{2}-1}
|
f(x)={2x-1:-3<x<= 0,sqrt(x+1):0<x<= 8}
|
f(x)=\left\{2x-1:-3<x\le\:0,\sqrt{x+1}:0<x\le\:8\right\}
|
f(x)=cos(6x)-3sin(3x)+1
|
f(x)=\cos(6x)-3\sin(3x)+1
|
f(x)=x^3+4x^2+2
|
f(x)=x^{3}+4x^{2}+2
|
f(x)=x+\sqrt[3]{x}
|
f(x)=x+\sqrt[3]{x}
|
f(x)=+g(x)=(x^2+2x)/1+(3x-x^2)/(2x)
|
f(x)=+g(x)=\frac{x^{2}+2x}{1}+\frac{3x-x^{2}}{2x}
|
y=4x^2+24x
|
y=4x^{2}+24x
|
y=(3x^2+2x+4)/(x^2-2x+1)
|
y=\frac{3x^{2}+2x+4}{x^{2}-2x+1}
|
f(x)=4x^2-5x+1
|
f(x)=4x^{2}-5x+1
|
f(x)=-x^2+4
|
f(x)=-x^{2}+4
|
g(x)=2x^2-6x-56
|
g(x)=2x^{2}-6x-56
|
f(x)=3x^4+2x^3
|
f(x)=3x^{4}+2x^{3}
|
f(x)= 3/4 x^4-8x^2
|
f(x)=\frac{3}{4}x^{4}-8x^{2}
|
f(x)=sqrt(x+1)+sqrt(x)
|
f(x)=\sqrt{x+1}+\sqrt{x}
|
f(x)=25x^2-81
|
f(x)=25x^{2}-81
|
y=x^3sqrt(x^5)
|
y=x^{3}\sqrt{x^{5}}
|
f(x)=sqrt(1+sin^2(x)+9cos^2(x))
|
f(x)=\sqrt{1+\sin^{2}(x)+9\cos^{2}(x)}
|
y=-x^2-33+8x
|
y=-x^{2}-33+8x
|
f(x)=(x+2)(2x+3)
|
f(x)=(x+2)(2x+3)
|
f(x)=3x^3+7
|
f(x)=3x^{3}+7
|
inverse of f(x)=(x+2)/2
|
inverse\:f(x)=\frac{x+2}{2}
|
f(z)=(z^2)/2
|
f(z)=\frac{z^{2}}{2}
|
f(x)=2x^2-18x+36
|
f(x)=2x^{2}-18x+36
|
f(x)=-5/6 x+7/2
|
f(x)=-\frac{5}{6}x+\frac{7}{2}
|
f(x)=sqrt(1-2x)-3
|
f(x)=\sqrt{1-2x}-3
|
g(y)=2-x
|
g(y)=2-x
|
y=-log_{2}(x)-4
|
y=-\log_{2}(x)-4
|