f(x)=(14)/(x^2)
|
f(x)=\frac{14}{x^{2}}
|
y=(3x^3+1)(-4x^2-3)^4
|
y=(3x^{3}+1)(-4x^{2}-3)^{4}
|
f(x)=sin(2x)cos(2x)
|
f(x)=\sin(2x)\cos(2x)
|
f(x)=x(x-1)(x+1)
|
f(x)=x(x-1)(x+1)
|
f(x)=t^3+3*cos(2t)
|
f(x)=t^{3}+3\cdot\:\cos(2t)
|
f(x)=2x^2+5x-10
|
f(x)=2x^{2}+5x-10
|
shift-5sin(x)
|
shift\:-5\sin(x)
|
y^2-6
|
y^{2}-6
|
f(x)=x^2sqrt(1+4x^2)
|
f(x)=x^{2}\sqrt{1+4x^{2}}
|
f(x)=2x^4+3x^3+2x+1
|
f(x)=2x^{4}+3x^{3}+2x+1
|
f(x)=2x^2+5x+12
|
f(x)=2x^{2}+5x+12
|
y=\sqrt[3]{tan^2(3x-1)^3}
|
y=\sqrt[3]{\tan^{2}(3x-1)^{3}}
|
f(x)=sin(3x)-sin(2x)
|
f(x)=\sin(3x)-\sin(2x)
|
2x-11
|
2x-11
|
f(x)=xsqrt(x-x^2)
|
f(x)=x\sqrt{x-x^{2}}
|
g(x)=cos((2pi)/3 x)+1
|
g(x)=\cos(\frac{2π}{3}x)+1
|
f(t)=-4.9t^2+29.4t-36.1
|
f(t)=-4.9t^{2}+29.4t-36.1
|
r=4sin(θ)
|
r=4\sin(θ)
|
6cos^2(x)-cos(x)-2,0<= x<= 2pi
|
6\cos^{2}(x)-\cos(x)-2,0\le\:x\le\:2π
|
f(x)=ln(x^2+25)
|
f(x)=\ln(x^{2}+25)
|
y= 1/7 sin(6x)
|
y=\frac{1}{7}\sin(6x)
|
f(x)=ln(x^2+64)
|
f(x)=\ln(x^{2}+64)
|
f(x)=sin(x)*x^2
|
f(x)=\sin(x)\cdot\:x^{2}
|
f(a)=a^4+1
|
f(a)=a^{4}+1
|
y=xsqrt(x)+e^{-x}
|
y=x\sqrt{x}+e^{-x}
|
y=x+2/x
|
y=x+\frac{2}{x}
|
y=(1/3)^{-x}
|
y=(\frac{1}{3})^{-x}
|
f(x)=(x-1)^2sqrt(x+1)
|
f(x)=(x-1)^{2}\sqrt{x+1}
|
domain of sqrt(x^2+3)
|
domain\:\sqrt{x^{2}+3}
|
f(x)=(2x^3-8)/(x^2)
|
f(x)=\frac{2x^{3}-8}{x^{2}}
|
f(x)=ln(x)+4
|
f(x)=\ln(x)+4
|
f(x)=2x^3+x
|
f(x)=2x^{3}+x
|
f(y)=(*+y)^2
|
f(y)=(\cdot\:+y)^{2}
|
f(x)= 1/(ln(x-1))
|
f(x)=\frac{1}{\ln(x-1)}
|
f(x)=7-4x^3
|
f(x)=7-4x^{3}
|
f(x)=2x^4-7x^3-27x^2+63x+81
|
f(x)=2x^{4}-7x^{3}-27x^{2}+63x+81
|
f(x)=x^3-3x^2+x+5
|
f(x)=x^{3}-3x^{2}+x+5
|
domain of\&range f(x)=2^{x-5}-11
|
domain\&range\:f(x)=2^{x-5}-11
|
f(x)=3x^2+4x+8
|
f(x)=3x^{2}+4x+8
|
slope intercept of 12+4y=-4x
|
slope\:intercept\:12+4y=-4x
|
f(x)=1.2x
|
f(x)=1.2x
|
f(x)=xe^{8x}
|
f(x)=xe^{8x}
|
g(x)=sqrt(x+6)
|
g(x)=\sqrt{x+6}
|
y=1.5(2)^x
|
y=1.5(2)^{x}
|
f(x)=log_{10}(x)+5
|
f(x)=\log_{10}(x)+5
|
f(z)=z(\sqrt[3]{z^2-1})
|
f(z)=z(\sqrt[3]{z^{2}-1})
|
f(x)=log_{7/8}(x)
|
f(x)=\log_{\frac{7}{8}}(x)
|
f(x)=cos(x)*tan(x)
|
f(x)=\cos(x)\cdot\:\tan(x)
|
y=2x^2+5x+4
|
y=2x^{2}+5x+4
|
extreme points of x^3-9x^2+15x+8
|
extreme\:points\:x^{3}-9x^{2}+15x+8
|
f(x)=arccos(sqrt(-3x^2+4))
|
f(x)=\arccos(\sqrt{-3x^{2}+4})
|
y=1.33x+2
|
y=1.33x+2
|
y= 2/(sqrt(x))+1
|
y=\frac{2}{\sqrt{x}}+1
|
2x-x^2
|
2x-x^{2}
|
y=pix
|
y=πx
|
g(x)=(t^5-1)(4t^2-7t-3)
|
g(x)=(t^{5}-1)(4t^{2}-7t-3)
|
f(x)=3(x+2)(x-10)
|
f(x)=3(x+2)(x-10)
|
f(x)=4x^3-13x^2+9x+2
|
f(x)=4x^{3}-13x^{2}+9x+2
|
f(x)=(x^2-16)/(x^3-5x^2+4x)
|
f(x)=\frac{x^{2}-16}{x^{3}-5x^{2}+4x}
|
f(x)= 2/3 cos(4x+(8pi)/3)
|
f(x)=\frac{2}{3}\cos(4x+\frac{8π}{3})
|
extreme points of f(x)=(4+3x)^7
|
extreme\:points\:f(x)=(4+3x)^{7}
|
slope of-4,f(2)-8
|
slope\:-4,f(2)-8
|
S=(n-2)180
|
S=(n-2)180
|
f(x)=x^3+ax^2+9x-2
|
f(x)=x^{3}+ax^{2}+9x-2
|
y=(1/7)^x
|
y=(\frac{1}{7})^{x}
|
g(x)=(x^2)/(x-1)
|
g(x)=\frac{x^{2}}{x-1}
|
f(x)=sin^2(x+1)
|
f(x)=\sin^{2}(x+1)
|
y= 2/3 e^x+e^{-2x}
|
y=\frac{2}{3}e^{x}+e^{-2x}
|
y=4^{x-2}
|
y=4^{x-2}
|
f(x)=3x-5x^2+8x^4-2
|
f(x)=3x-5x^{2}+8x^{4}-2
|
f(x)=-x/2-7
|
f(x)=-\frac{x}{2}-7
|
f(x)=x^2+2x-16
|
f(x)=x^{2}+2x-16
|
parallel m=-2,\at (1,7)
|
parallel\:m=-2,\at\:(1,7)
|
f(x)=x^2+2x-63
|
f(x)=x^{2}+2x-63
|
f(x)=(x^2)/(sqrt(x-4))
|
f(x)=\frac{x^{2}}{\sqrt{x-4}}
|
y=-2x^2-3x+5
|
y=-2x^{2}-3x+5
|
f(x)=(2sin(4x)+1-cos(x))/x
|
f(x)=\frac{2\sin(4x)+1-\cos(x)}{x}
|
f(z)= 1/(sqrt(z))
|
f(z)=\frac{1}{\sqrt{z}}
|
y=tan(x),0<= x<= pi/3
|
y=\tan(x),0\le\:x\le\:\frac{π}{3}
|
f(x)=-2x^2-10x+5
|
f(x)=-2x^{2}-10x+5
|
f(x)= 1/2 csc(x/4)
|
f(x)=\frac{1}{2}\csc(\frac{x}{4})
|
f(θ)=sin^2(θ)*cos^2(θ)
|
f(θ)=\sin^{2}(θ)\cdot\:\cos^{2}(θ)
|
f(x)=log_{3}(x+3)-2
|
f(x)=\log_{3}(x+3)-2
|
asymptotes of f(x)= 6/(x^2)
|
asymptotes\:f(x)=\frac{6}{x^{2}}
|
y=x^4+2e^x
|
y=x^{4}+2e^{x}
|
f(x)=(x^2-3x-18)/(x^2+9x+8)
|
f(x)=\frac{x^{2}-3x-18}{x^{2}+9x+8}
|
f(x)=25+x^2
|
f(x)=25+x^{2}
|
f(x)=x^3-2x^2-3x+2
|
f(x)=x^{3}-2x^{2}-3x+2
|
f(x)=2.4+(10/9)^{7x+5}
|
f(x)=2.4+(\frac{10}{9})^{7x+5}
|
f(x)=sqrt(9x+8)
|
f(x)=\sqrt{9x+8}
|
f(x)=ln^x(x)
|
f(x)=\ln^{x}(x)
|
y=(x-2)/(3x-1)
|
y=\frac{x-2}{3x-1}
|
f(x)=(sqrt(x-1))/x
|
f(x)=\frac{\sqrt{x-1}}{x}
|
f(x)=(3x-15)/(x+4)
|
f(x)=\frac{3x-15}{x+4}
|
range of f(x)=3sin(x/2)
|
range\:f(x)=3\sin(\frac{x}{2})
|
f(t)=5sin(5t)
|
f(t)=5\sin(5t)
|
g(x)=3x^2-x+2
|
g(x)=3x^{2}-x+2
|
f(x)=x+19
|
f(x)=x+19
|
f(x)=x^3+2x^2-2x
|
f(x)=x^{3}+2x^{2}-2x
|
f(x)=4x-5+20x^2
|
f(x)=4x-5+20x^{2}
|