f(x)=sec^2(x)+cos^2(x)
|
f(x)=\sec^{2}(x)+\cos^{2}(x)
|
f(x)=(ln(x))^{1/2}
|
f(x)=(\ln(x))^{\frac{1}{2}}
|
f(x)=8x-16
|
f(x)=8x-16
|
f(x)=x^3+2x^2-4x+2
|
f(x)=x^{3}+2x^{2}-4x+2
|
y= 5/2 sin(x)
|
y=\frac{5}{2}\sin(x)
|
f(x)=(ln(x))/(2x)
|
f(x)=\frac{\ln(x)}{2x}
|
f(n)=(log_{10}(n))^{log_{10}(n)}
|
f(n)=(\log_{10}(n))^{\log_{10}(n)}
|
g(x)=-2^x
|
g(x)=-2^{x}
|
asymptotes of x+2
|
asymptotes\:x+2
|
f(x)= 1/(e^x+1)+2/9 x
|
f(x)=\frac{1}{e^{x}+1}+\frac{2}{9}x
|
f(x)=-x^3+4x^2-2x-21
|
f(x)=-x^{3}+4x^{2}-2x-21
|
f(x)= 1/x+x
|
f(x)=\frac{1}{x}+x
|
f(x)=(2x+1)/(x^2+x-2)
|
f(x)=\frac{2x+1}{x^{2}+x-2}
|
x,x>= 7
|
x,x\ge\:7
|
f(x)=(x-4)/(x-3)
|
f(x)=\frac{x-4}{x-3}
|
f(x)=e^{x+1}-3e^x+2e^{x^3}
|
f(x)=e^{x+1}-3e^{x}+2e^{x^{3}}
|
f(x)=2(3)^3
|
f(x)=2(3)^{3}
|
f(x)=(e^x+e^{-x})/(e^x-e^{-x)}
|
f(x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
|
domain of f(x)=x^2+3x-4
|
domain\:f(x)=x^{2}+3x-4
|
g(9)=(6x^2-486)/(6x-54)
|
g(9)=\frac{6x^{2}-486}{6x-54}
|
f(x)=4x^2+6+sqrt(-8-x)
|
f(x)=4x^{2}+6+\sqrt{-8-x}
|
f(a)=12a
|
f(a)=12a
|
f(x)=3x^2-6x-6
|
f(x)=3x^{2}-6x-6
|
y=sin(x+a)
|
y=\sin(x+a)
|
f(x)=9x^2+5x-1
|
f(x)=9x^{2}+5x-1
|
f(t)=t^2-2t+3
|
f(t)=t^{2}-2t+3
|
f(-1)=-5x+2
|
f(-1)=-5x+2
|
f(x)=cos(1-x)
|
f(x)=\cos(1-x)
|
y=(2x^3+2)(x^4+2)
|
y=(2x^{3}+2)(x^{4}+2)
|
parity x^7+5x^3+10x
|
parity\:x^{7}+5x^{3}+10x
|
y=tan^3(5x+4)
|
y=\tan^{3}(5x+4)
|
f(x)=arctanh(\sqrt[4]{x})
|
f(x)=\arctanh(\sqrt[4]{x})
|
f(x)=(x-6)(x-8)
|
f(x)=(x-6)(x-8)
|
y=2+sqrt(x^2-9)
|
y=2+\sqrt{x^{2}-9}
|
f(x)=(1/x)
|
f(x)=(\frac{1}{x})
|
f(x)=|3x-3|
|
f(x)=\left|3x-3\right|
|
f(x)=x^{2/3}(x+2)
|
f(x)=x^{\frac{2}{3}}(x+2)
|
f(x)=((x-2))/((x^2+4x+4))
|
f(x)=\frac{(x-2)}{(x^{2}+4x+4)}
|
y=x^2e^2
|
y=x^{2}e^{2}
|
f(x)=(3/4)^2
|
f(x)=(\frac{3}{4})^{2}
|
asymptotes of f(x)=x^3+x^2-9x-9
|
asymptotes\:f(x)=x^{3}+x^{2}-9x-9
|
midpoint (-4,5)(5,-8)
|
midpoint\:(-4,5)(5,-8)
|
g(t)=8000e^{0.05t}
|
g(t)=8000e^{0.05t}
|
f(x)=x^3-4x^2+3x+2
|
f(x)=x^{3}-4x^{2}+3x+2
|
f(x)=x^4-2x^3-2
|
f(x)=x^{4}-2x^{3}-2
|
f(x)=sin(5x)sin(2x)
|
f(x)=\sin(5x)\sin(2x)
|
k(x)=cos(15x)+sin(8x)sin(7x)
|
k(x)=\cos(15x)+\sin(8x)\sin(7x)
|
f(x)=-3x^2+24x-46
|
f(x)=-3x^{2}+24x-46
|
y=(x^2-1)/(x^2+x+1)
|
y=\frac{x^{2}-1}{x^{2}+x+1}
|
f(x)=3x^2+7x-12
|
f(x)=3x^{2}+7x-12
|
f(x)=(x^2-1)/(2x^3)
|
f(x)=\frac{x^{2}-1}{2x^{3}}
|
f(x)=2x^2-12x+22
|
f(x)=2x^{2}-12x+22
|
line (5,4),(8,6)
|
line\:(5,4),(8,6)
|
C(x)=600-10x+0.25x^2
|
C(x)=600-10x+0.25x^{2}
|
f(x)=5x^2-8x-44ln(x-1)
|
f(x)=5x^{2}-8x-44\ln(x-1)
|
g(x)= 1/((x^2+1))
|
g(x)=\frac{1}{(x^{2}+1)}
|
R(x)=8x^3+27
|
R(x)=8x^{3}+27
|
f(x)=-2(x-1)^3(x+2)^2
|
f(x)=-2(x-1)^{3}(x+2)^{2}
|
f(x)=(2x)/(3x^2-3)
|
f(x)=\frac{2x}{3x^{2}-3}
|
f(x)= 4/(-x-2)
|
f(x)=\frac{4}{-x-2}
|
f(x)= 1/(x+2)+1
|
f(x)=\frac{1}{x+2}+1
|
f(x)=cos^2(ln(x))
|
f(x)=\cos^{2}(\ln(x))
|
y=g(2)
|
y=g(2)
|
extreme points of f(x)=x^3-12x+12
|
extreme\:points\:f(x)=x^{3}-12x+12
|
h(x)=-5sqrt(x)
|
h(x)=-5\sqrt{x}
|
f(x)=-4x^2+4x
|
f(x)=-4x^{2}+4x
|
f(x)=10x^2+23x-42
|
f(x)=10x^{2}+23x-42
|
f(x)=xln(x/5)
|
f(x)=x\ln(\frac{x}{5})
|
y=(2x-7)/(x-3)
|
y=\frac{2x-7}{x-3}
|
f(t)=sin(2t)sin(t)
|
f(t)=\sin(2t)\sin(t)
|
f(x)=7*x^2
|
f(x)=7\cdot\:x^{2}
|
g(x)=sqrt(x(x-2))
|
g(x)=\sqrt{x(x-2)}
|
f(x)=ddx
|
f(x)=ddx
|
y=(e^x)/2
|
y=\frac{e^{x}}{2}
|
inverse of y=-3x+4
|
inverse\:y=-3x+4
|
f(x)=sqrt(x^2-2x+5)
|
f(x)=\sqrt{x^{2}-2x+5}
|
f(x)=(2x)/(x^2+9)
|
f(x)=\frac{2x}{x^{2}+9}
|
g(x)=x^2+3x-4
|
g(x)=x^{2}+3x-4
|
f(q)=q^2+8q-7
|
f(q)=q^{2}+8q-7
|
y=x^2-10x+125
|
y=x^{2}-10x+125
|
f(x)=(-(x-1)^2)/(x+2)
|
f(x)=\frac{-(x-1)^{2}}{x+2}
|
y=x^2(x-2)^4
|
y=x^{2}(x-2)^{4}
|
f(x)=x^2*2^x
|
f(x)=x^{2}\cdot\:2^{x}
|
y=-x^2+8x-10
|
y=-x^{2}+8x-10
|
f(x)=3csc(x)
|
f(x)=3\csc(x)
|
extreme points of 120x-0.4x^4+700
|
extreme\:points\:120x-0.4x^{4}+700
|
f(x)=(3-e^{-2x})^5
|
f(x)=(3-e^{-2x})^{5}
|
p(x)=2x^3+7x^2+2x-3
|
p(x)=2x^{3}+7x^{2}+2x-3
|
f(x)=(x+2)/((x+4)(x+1))
|
f(x)=\frac{x+2}{(x+4)(x+1)}
|
y=(2x+1)^5(x^3-x+1)^4
|
y=(2x+1)^{5}(x^{3}-x+1)^{4}
|
y=|x-2|,-1<x<5
|
y=\left|x-2\right|,-1<x<5
|
f(x)=3x^2-8x-5
|
f(x)=3x^{2}-8x-5
|
P(x)=x^3+10x^2+3x-54
|
P(x)=x^{3}+10x^{2}+3x-54
|
V(t)=2(3t+1)^{1/2}
|
V(t)=2(3t+1)^{\frac{1}{2}}
|
p(x)=x^3+x^2-9x-9
|
p(x)=x^{3}+x^{2}-9x-9
|
g(x)=x-sqrt(2x-3)
|
g(x)=x-\sqrt{2x-3}
|
slope intercept of x+y=-4
|
slope\:intercept\:x+y=-4
|
f(x)=3x^2-30x+76
|
f(x)=3x^{2}-30x+76
|
y=|2x-5|
|
y=\left|2x-5\right|
|
f(t)=sin(t)cosh(t)
|
f(t)=\sin(t)\cosh(t)
|