f(x)=3x^2(x+4)^6(x-6)^6
|
f(x)=3x^{2}(x+4)^{6}(x-6)^{6}
|
midpoint (2,0)(10,0)
|
midpoint\:(2,0)(10,0)
|
y=(x^5(x+2))/(x-3)
|
y=\frac{x^{5}(x+2)}{x-3}
|
f(y)=sqrt(y)-y
|
f(y)=\sqrt{y}-y
|
f(x)=6x^2-3x-1
|
f(x)=6x^{2}-3x-1
|
h(x)=x^2+3x-4
|
h(x)=x^{2}+3x-4
|
f(x)=x^{1/5}(x+6)
|
f(x)=x^{\frac{1}{5}}(x+6)
|
y=5^{xsin(x)}
|
y=5^{x\sin(x)}
|
f(x)=2-1/x
|
f(x)=2-\frac{1}{x}
|
f(x)=7638*x^{1/2}
|
f(x)=7638\cdot\:x^{\frac{1}{2}}
|
P(x)=-x^2+3x-4
|
P(x)=-x^{2}+3x-4
|
f(x)=2x^2-32x+315
|
f(x)=2x^{2}-32x+315
|
domain of f(x)= x/(x+2)
|
domain\:f(x)=\frac{x}{x+2}
|
f(x)=[|x|]
|
f(x)=[\left|x\right|]
|
y=(-2(x-1))/(x^3-5x^2+8x-4)
|
y=\frac{-2(x-1)}{x^{3}-5x^{2}+8x-4}
|
E(x)=(x+3)^2-(2x-3)^2+(3x+1)(x-3)-9x
|
E(x)=(x+3)^{2}-(2x-3)^{2}+(3x+1)(x-3)-9x
|
y=5*(1/2)^{-x-1}-2
|
y=5\cdot\:(\frac{1}{2})^{-x-1}-2
|
y=3x^3-x
|
y=3x^{3}-x
|
f(x)= 2/(x^3-5x)
|
f(x)=\frac{2}{x^{3}-5x}
|
f(x)=(x^5+12x^3-5x)/(2x^6+4x^3+x^2-2)
|
f(x)=\frac{x^{5}+12x^{3}-5x}{2x^{6}+4x^{3}+x^{2}-2}
|
y=-1/2 x^2+2x+2.5
|
y=-\frac{1}{2}x^{2}+2x+2.5
|
y=(4x^2-16x+8)^5
|
y=(4x^{2}-16x+8)^{5}
|
f(x)=sqrt(x-|x|)
|
f(x)=\sqrt{x-\left|x\right|}
|
range of y=sqrt(7/(x-5))
|
range\:y=\sqrt{\frac{7}{x-5}}
|
inverse of 3/4 x^5+5
|
inverse\:\frac{3}{4}x^{5}+5
|
f(x)=4x(x-4)(x+2)
|
f(x)=4x(x-4)(x+2)
|
x=sin(2t)
|
x=\sin(2t)
|
f(x)=(1-4x)^{1/4}
|
f(x)=(1-4x)^{\frac{1}{4}}
|
f(x)=6sin(x)+6cos(x)
|
f(x)=6\sin(x)+6\cos(x)
|
f(x)=-2sqrt(x+4)
|
f(x)=-2\sqrt{x+4}
|
f(x)=(2x^2)/(3x-1)
|
f(x)=\frac{2x^{2}}{3x-1}
|
f(x)=(x^3)/(1+3x^4)
|
f(x)=\frac{x^{3}}{1+3x^{4}}
|
f(θ)=(θ+1)cos(θ)
|
f(θ)=(θ+1)\cos(θ)
|
f(x)=(2+x)e^{1/x}
|
f(x)=(2+x)e^{\frac{1}{x}}
|
f(x)=ln(4)x^2
|
f(x)=\ln(4)x^{2}
|
inverse of (x^7)/7
|
inverse\:\frac{x^{7}}{7}
|
f(x)=10x-4
|
f(x)=10x-4
|
g(x)= x/(x^2+9)
|
g(x)=\frac{x}{x^{2}+9}
|
f(x)=e^{x-2}-1
|
f(x)=e^{x-2}-1
|
y=\sqrt[5]{(x^3+x-2)}
|
y=\sqrt[5]{(x^{3}+x-2)}
|
y=sqrt((a^2+x^2)/(a^2-x^2))
|
y=\sqrt{\frac{a^{2}+x^{2}}{a^{2}-x^{2}}}
|
f(x)= 1/3 x^3-1/2 x^2-2x
|
f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x
|
f(x)=(12)/(x^2-25)
|
f(x)=\frac{12}{x^{2}-25}
|
y=x^4-13x^2+36
|
y=x^{4}-13x^{2}+36
|
F(x)=x^3-6x^2+9x
|
F(x)=x^{3}-6x^{2}+9x
|
line (1,2)(22,3)
|
line\:(1,2)(22,3)
|
f(x)=(x^3)/9
|
f(x)=\frac{x^{3}}{9}
|
f(t)=600*3^{t/4}
|
f(t)=600\cdot\:3^{\frac{t}{4}}
|
f(n)=n^2+4
|
f(n)=n^{2}+4
|
f(t)=t-4
|
f(t)=t-4
|
y=-1/2 x+20
|
y=-\frac{1}{2}x+20
|
f(x)=sin(x)+3cos(x)
|
f(x)=\sin(x)+3\cos(x)
|
s(t)=976(0.835)t-1+176t
|
s(t)=976(0.835)t-1+176t
|
g(x)= 1/(x-3)+6
|
g(x)=\frac{1}{x-3}+6
|
y= 5/(x+2)
|
y=\frac{5}{x+2}
|
f(x)=-x^5+7
|
f(x)=-x^{5}+7
|
inflection points of (x-2)^{(3)}
|
inflection\:points\:(x-2)^{(3)}
|
y=2+3^x
|
y=2+3^{x}
|
h(x)=x(x-2)
|
h(x)=x(x-2)
|
y=sin(-6x)
|
y=\sin(-6x)
|
f(t)=-3t^2+36t
|
f(t)=-3t^{2}+36t
|
f(x)= 2/(5x-1)
|
f(x)=\frac{2}{5x-1}
|
y= 1/4 x^2-1/2 ln(x),1<= x<= 8
|
y=\frac{1}{4}x^{2}-\frac{1}{2}\ln(x),1\le\:x\le\:8
|
f(y)=((y^5-5y^3+2y))/(y^3)
|
f(y)=\frac{(y^{5}-5y^{3}+2y)}{y^{3}}
|
y=(x+4)/(2x-2)
|
y=\frac{x+4}{2x-2}
|
W(x)=x^2-25
|
W(x)=x^{2}-25
|
f(x)=(3x^4-2x)/(x^3)
|
f(x)=\frac{3x^{4}-2x}{x^{3}}
|
inverse of f(x)=5x-x^2
|
inverse\:f(x)=5x-x^{2}
|
y=(x+4)/(x^2-9)
|
y=\frac{x+4}{x^{2}-9}
|
f(x)=ln|(xe^3+1)/(x-1)|
|
f(x)=\ln\left|\frac{xe^{3}+1}{x-1}\right|
|
y=4e^{3x}
|
y=4e^{3x}
|
f(x)=(x-2)(x+1)^2
|
f(x)=(x-2)(x+1)^{2}
|
f(x)=6x-4+x^2
|
f(x)=6x-4+x^{2}
|
f(t)= 1/(t^2+1)
|
f(t)=\frac{1}{t^{2}+1}
|
f(x)=2ln|x|
|
f(x)=2\ln\left|x\right|
|
f(x)=(x-2)^2(x+1)^4
|
f(x)=(x-2)^{2}(x+1)^{4}
|
y=(sqrt(2x^2-2x+1))/x
|
y=\frac{\sqrt{2x^{2}-2x+1}}{x}
|
domain of 5^x-4
|
domain\:5^{x}-4
|
f(x)=3-2^x
|
f(x)=3-2^{x}
|
f(x)=(2x-3)^5
|
f(x)=(2x-3)^{5}
|
f(x)=-3^x+2
|
f(x)=-3^{x}+2
|
f(x)=log_{10}(3x+1)
|
f(x)=\log_{10}(3x+1)
|
f(x)=x^2-26x+126
|
f(x)=x^{2}-26x+126
|
f(x)=-2cos(x)-sqrt(3)x
|
f(x)=-2\cos(x)-\sqrt{3}x
|
f(x)=(x-1)/(x-5)
|
f(x)=\frac{x-1}{x-5}
|
y=-13x^3+14x^2-2x+3
|
y=-13x^{3}+14x^{2}-2x+3
|
f(x)=x^6-6x^4-31x^2+36
|
f(x)=x^{6}-6x^{4}-31x^{2}+36
|
f(x)=xsqrt(100-x^2)
|
f(x)=x\sqrt{100-x^{2}}
|
asymptotes of f(x)=10^{(x-2)}-5
|
asymptotes\:f(x)=10^{(x-2)}-5
|
g(x)=-1-log_{4}(x)
|
g(x)=-1-\log_{4}(x)
|
y=2x^5-x^4+2x^3-6x^2+2x+4
|
y=2x^{5}-x^{4}+2x^{3}-6x^{2}+2x+4
|
y=-(t-1)^2+33
|
y=-(t-1)^{2}+33
|
f(x)=x^2-50x+2500
|
f(x)=x^{2}-50x+2500
|
f(n)=cos(2n)
|
f(n)=\cos(2n)
|
f(x)=x^7+x^6-x^2
|
f(x)=x^{7}+x^{6}-x^{2}
|
f(x)=2+2^x
|
f(x)=2+2^{x}
|
f(x)=x^4+3x^3-27x^2+13x+42
|
f(x)=x^{4}+3x^{3}-27x^{2}+13x+42
|
y=tan(3x+c)
|
y=\tan(3x+c)
|
f(θ)=sqrt(3)sin(θ)
|
f(θ)=\sqrt{3}\sin(θ)
|
inflection points of f(x)=x^3-9x^2-21x+2
|
inflection\:points\:f(x)=x^{3}-9x^{2}-21x+2
|