f(x)= 7/(x^2-4)
|
f(x)=\frac{7}{x^{2}-4}
|
y=sqrt(1-x)+1
|
y=\sqrt{1-x}+1
|
f(x)=sqrt(3x-2)+4
|
f(x)=\sqrt{3x-2}+4
|
parity (cos(x))/((sin(x))^{0.5)}
|
parity\:\frac{\cos(x)}{(\sin(x))^{0.5}}
|
f(x)=(x-6)/(x^2+12x+36)
|
f(x)=\frac{x-6}{x^{2}+12x+36}
|
f(a)=6a+7
|
f(a)=6a+7
|
f(x)=(x-1)ln(x^2+1)
|
f(x)=(x-1)\ln(x^{2}+1)
|
f(8)=3x+2
|
f(8)=3x+2
|
y=2^{1-x}
|
y=2^{1-x}
|
f(x)=-1.5x^6-2x^4+12x
|
f(x)=-1.5x^{6}-2x^{4}+12x
|
y=(x+1)/(x^2-4x+3)
|
y=\frac{x+1}{x^{2}-4x+3}
|
f(x)=x^4sin(1/(\sqrt[3]{x)})
|
f(x)=x^{4}\sin(\frac{1}{\sqrt[3]{x}})
|
P(x)=x^2+1
|
P(x)=x^{2}+1
|
f(x)=5x^2-70x+258
|
f(x)=5x^{2}-70x+258
|
domain of y=6-sqrt(x+36)
|
domain\:y=6-\sqrt{x+36}
|
y=x^2-16x+17
|
y=x^{2}-16x+17
|
f(n)=3*log_{3}(n)
|
f(n)=3\cdot\:\log_{3}(n)
|
f(x)=x^3-10x^2+25x
|
f(x)=x^{3}-10x^{2}+25x
|
f(x)= 1/(6x^2)
|
f(x)=\frac{1}{6x^{2}}
|
g(x)=(3x^2+6)sin^2(x)+(3x^2+6)cos^2(x)
|
g(x)=(3x^{2}+6)\sin^{2}(x)+(3x^{2}+6)\cos^{2}(x)
|
y=-3x^2+12x-12
|
y=-3x^{2}+12x-12
|
f(x)=2x^2+3x-20
|
f(x)=2x^{2}+3x-20
|
f(x)=2x^3-3x^2-4
|
f(x)=2x^{3}-3x^{2}-4
|
f(x)=(9-e^{x^2})/(1-e^{9-x^2)}
|
f(x)=\frac{9-e^{x^{2}}}{1-e^{9-x^{2}}}
|
y= 1/5 x-10
|
y=\frac{1}{5}x-10
|
domain of sqrt(2x)(3x-8)
|
domain\:\sqrt{2x}(3x-8)
|
y=(x^2+1)/(x-1)+\sqrt[3]{x}
|
y=\frac{x^{2}+1}{x-1}+\sqrt[3]{x}
|
f(a)=4a+7
|
f(a)=4a+7
|
y=0.4sin(3x+pi/3)
|
y=0.4\sin(3x+\frac{π}{3})
|
f(x)=5x^{9/2}
|
f(x)=5x^{\frac{9}{2}}
|
f(x)=arccos(x)dx
|
f(x)=\arccos(x)dx
|
f(x)=(3x-1)/(x^2+1)
|
f(x)=\frac{3x-1}{x^{2}+1}
|
f(x)=log_{2}(log_{2}(log_{2}(x)))
|
f(x)=\log_{2}(\log_{2}(\log_{2}(x)))
|
f(x)= 1/(x^4+1)
|
f(x)=\frac{1}{x^{4}+1}
|
f(x)=x^4-8x^3+20x^2-8x-20
|
f(x)=x^{4}-8x^{3}+20x^{2}-8x-20
|
f(x)=e^x+e^{3x}
|
f(x)=e^{x}+e^{3x}
|
inverse of [ 5/(z-0.2)-5/(z+0.4)-3]
|
inverse\:[\frac{5}{z-0.2}-\frac{5}{z+0.4}-3]
|
y=2(x+6)^2-2
|
y=2(x+6)^{2}-2
|
f(x)=2x^4-x^3+17x^2-9x-9
|
f(x)=2x^{4}-x^{3}+17x^{2}-9x-9
|
f(x)=log_{2}(8x^2+16x+8)
|
f(x)=\log_{2}(8x^{2}+16x+8)
|
f(x)=x*9
|
f(x)=x\cdot\:9
|
f(x)=-6/(x^2)
|
f(x)=-\frac{6}{x^{2}}
|
f(x)=(sqrt(x)\sqrt[3]{x})/(sqrt(x))
|
f(x)=\frac{\sqrt{x}\sqrt[3]{x}}{\sqrt{x}}
|
f(x)=sqrt(4-x^2)+3x+1
|
f(x)=\sqrt{4-x^{2}}+3x+1
|
f(x)=2x^2-8x+15
|
f(x)=2x^{2}-8x+15
|
y=((2x)/(x+2))^4
|
y=(\frac{2x}{x+2})^{4}
|
h(x)=((x+1)^2)/(x(x+2))
|
h(x)=\frac{(x+1)^{2}}{x(x+2)}
|
range of x^2-6x+8
|
range\:x^{2}-6x+8
|
f(x)=x^4-x^3+5
|
f(x)=x^{4}-x^{3}+5
|
y=2(4^x)
|
y=2(4^{x})
|
y=e^x+sin(x)
|
y=e^{x}+\sin(x)
|
f(x)=(x-5)/(x-3)
|
f(x)=\frac{x-5}{x-3}
|
f(x)=(tan(x))/(1+tan(x))
|
f(x)=\frac{\tan(x)}{1+\tan(x)}
|
f(x)=x^{(2/3)}+0.85*(4-x^2)^{(1/2)}*sin(a*pi*x)
|
f(x)=x^{(\frac{2}{3})}+0.85\cdot\:(4-x^{2})^{(\frac{1}{2})}\cdot\:\sin(a\cdot\:π\cdot\:x)
|
f(x)= x/(x^2-3x+2)
|
f(x)=\frac{x}{x^{2}-3x+2}
|
y=sqrt(7-x),1<= x<= 7
|
y=\sqrt{7-x},1\le\:x\le\:7
|
f(x)=(-x^2)/(12+2x+10)
|
f(x)=\frac{-x^{2}}{12+2x+10}
|
f(x)=3x^2+x-4
|
f(x)=3x^{2}+x-4
|
midpoint (17,-17),(0,-19)
|
midpoint\:(17,-17),(0,-19)
|
f(x)=cos(x)-2sin(x)
|
f(x)=\cos(x)-2\sin(x)
|
f(x)=(x-5)/(x+4)
|
f(x)=\frac{x-5}{x+4}
|
y=5-8cos(pi/4 x-pi/2)
|
y=5-8\cos(\frac{π}{4}x-\frac{π}{2})
|
f(x)=16x^6
|
f(x)=16x^{6}
|
f(x)=ln(csc(x))
|
f(x)=\ln(\csc(x))
|
f(x)=3x^4+7x^3+2x^2+x+9
|
f(x)=3x^{4}+7x^{3}+2x^{2}+x+9
|
f(x)= 1/(sqrt(3-x))
|
f(x)=\frac{1}{\sqrt{3-x}}
|
f(k)=2*3^k
|
f(k)=2\cdot\:3^{k}
|
f(x)= 5/(2x-1)
|
f(x)=\frac{5}{2x-1}
|
f(x)= 1/2 (2)^x
|
f(x)=\frac{1}{2}(2)^{x}
|
inverse of f(x)=(x+2)^2-4
|
inverse\:f(x)=(x+2)^{2}-4
|
f(x)=(x+3)^2(x-2)^4
|
f(x)=(x+3)^{2}(x-2)^{4}
|
f(u)=u^{1/5}
|
f(u)=u^{\frac{1}{5}}
|
y= 1/2-x
|
y=\frac{1}{2}-x
|
f(θ)=(sin^3(θ))/(tan(θ)-sin(θ))
|
f(θ)=\frac{\sin^{3}(θ)}{\tan(θ)-\sin(θ)}
|
f(x)=x^3-5x^2+7x-1
|
f(x)=x^{3}-5x^{2}+7x-1
|
f(x)=x^3-9x^2-120x+6
|
f(x)=x^{3}-9x^{2}-120x+6
|
f(x)=(x^2-7)/(x+4)
|
f(x)=\frac{x^{2}-7}{x+4}
|
f(x)=2-3x-4x^2
|
f(x)=2-3x-4x^{2}
|
f(x)=100x^{100}
|
f(x)=100x^{100}
|
y=5cot(3x+pi/2)
|
y=5\cot(3x+\frac{π}{2})
|
intercepts of f(x)=-16x^2+60x+2
|
intercepts\:f(x)=-16x^{2}+60x+2
|
y= 1/x+x
|
y=\frac{1}{x}+x
|
f(x)=x^4-10x^3+25x^2
|
f(x)=x^{4}-10x^{3}+25x^{2}
|
f(x)=-2sin(x+pi/2)+1
|
f(x)=-2\sin(x+\frac{π}{2})+1
|
f(x)=12+2x^2-x^4
|
f(x)=12+2x^{2}-x^{4}
|
f(x)=(sin(4x))/2
|
f(x)=\frac{\sin(4x)}{2}
|
f(x)=x^4+4x^3-6x^2-4x+5
|
f(x)=x^{4}+4x^{3}-6x^{2}-4x+5
|
f(x)=x^3-1.5x^2,-1<= x<= 2
|
f(x)=x^{3}-1.5x^{2},-1\le\:x\le\:2
|
p(x)=-x^2+8x-12
|
p(x)=-x^{2}+8x-12
|
y= 5/4 x^3
|
y=\frac{5}{4}x^{3}
|
range of xln(x)
|
range\:x\ln(x)
|
f(x)=(x^4+3)/(6x)
|
f(x)=\frac{x^{4}+3}{6x}
|
f(t)=6cos(t)tan(t)
|
f(t)=6\cos(t)\tan(t)
|
f(x)=log_{10}((3+x)/(3-x))
|
f(x)=\log_{10}(\frac{3+x}{3-x})
|
y=(4x^2)/(2x)
|
y=\frac{4x^{2}}{2x}
|
f(x)=-1/3 x+sqrt(2)
|
f(x)=-\frac{1}{3}x+\sqrt{2}
|
y=\sqrt[3]{4-9x}
|
y=\sqrt[3]{4-9x}
|
h(t)=+2t^2+4=8t
|
h(t)=+2t^{2}+4=8t
|
f(x)= x/(25)
|
f(x)=\frac{x}{25}
|
f(x)=(x-2)/(2x+5)
|
f(x)=\frac{x-2}{2x+5}
|