domain of f(x)=(7-x)/(x^2-9x)
|
domain\:f(x)=\frac{7-x}{x^{2}-9x}
|
f(x)=(3x^2-9x+6)/(3x^2+3)
|
f(x)=\frac{3x^{2}-9x+6}{3x^{2}+3}
|
f(x)=4-2^{-x}
|
f(x)=4-2^{-x}
|
f(x)=(x+5)^2-1
|
f(x)=(x+5)^{2}-1
|
y=1-(1-x)^2
|
y=1-(1-x)^{2}
|
f(x)=(sqrt(4+x))/(1-x)
|
f(x)=\frac{\sqrt{4+x}}{1-x}
|
f(t)=sqrt(1+t)-sqrt(1-t)
|
f(t)=\sqrt{1+t}-\sqrt{1-t}
|
f(x)=8x^3+42x^2-73x+21
|
f(x)=8x^{3}+42x^{2}-73x+21
|
g(x)=(2x-3)/(x-2)
|
g(x)=\frac{2x-3}{x-2}
|
y=(x+5)/(x^2-9)
|
y=\frac{x+5}{x^{2}-9}
|
f(x)=sqrt(2x-x^3)
|
f(x)=\sqrt{2x-x^{3}}
|
parity y(x)=cos(sqrt(sin(cot(pi x))))
|
parity\:y(x)=\cos(\sqrt{\sin(\cot(\pi\:x))})
|
y=log_{3}(x-3)
|
y=\log_{3}(x-3)
|
f(x)=(x^2+4)/(4x^2-4x-8)
|
f(x)=\frac{x^{2}+4}{4x^{2}-4x-8}
|
f(x)=100sin(1000x+50)
|
f(x)=100\sin(1000x+50)
|
f(x)=e^x+1/(e^x)
|
f(x)=e^{x}+\frac{1}{e^{x}}
|
f(y)=-11y^5
|
f(y)=-11y^{5}
|
y=(-2x^3+6x^2+8x-24)/(x^3+11x^2+38x+40)
|
y=\frac{-2x^{3}+6x^{2}+8x-24}{x^{3}+11x^{2}+38x+40}
|
f(t)= 2/(1+3e^{-0.8t)}
|
f(t)=\frac{2}{1+3e^{-0.8t}}
|
f(x)=x^3-15x^2
|
f(x)=x^{3}-15x^{2}
|
f(x)=-2x^2+16x-33
|
f(x)=-2x^{2}+16x-33
|
f(x)=7^{x-3}
|
f(x)=7^{x-3}
|
asymptotes of f(x)=3x^4+4x^3+6x^2-4
|
asymptotes\:f(x)=3x^{4}+4x^{3}+6x^{2}-4
|
f(x)=1-2(x-3)^2
|
f(x)=1-2(x-3)^{2}
|
f(x)=12x^2-264x+989
|
f(x)=12x^{2}-264x+989
|
25.2x
|
25.2x
|
y=sin(1/2 x)+8
|
y=\sin(\frac{1}{2}x)+8
|
k(x)=ln((x+4)/(4x-16))
|
k(x)=\ln(\frac{x+4}{4x-16})
|
g(x)=(5x+e^x)/(x-1)+arcsin(x)+xe^x
|
g(x)=\frac{5x+e^{x}}{x-1}+\arcsin(x)+xe^{x}
|
f(x)=(2-x)^{100}
|
f(x)=(2-x)^{100}
|
f(x)=(x-2)/(|x-2|)
|
f(x)=\frac{x-2}{\left|x-2\right|}
|
f(x)=3x^2+5x+6
|
f(x)=3x^{2}+5x+6
|
f(x)=log_{10}(x+6)-4
|
f(x)=\log_{10}(x+6)-4
|
inverse of f(x)=(5^x)/(8+5^x)
|
inverse\:f(x)=\frac{5^{x}}{8+5^{x}}
|
f(x)=0^x
|
f(x)=0^{x}
|
f(x)=(x+5)/(x+1)
|
f(x)=\frac{x+5}{x+1}
|
y=4-3x^2
|
y=4-3x^{2}
|
f(x)=xe^{-x/2}
|
f(x)=xe^{-\frac{x}{2}}
|
f(x)=x^5-2x^3+2
|
f(x)=x^{5}-2x^{3}+2
|
h(x)=-3x^2+30x+225
|
h(x)=-3x^{2}+30x+225
|
f(x)=3x^2-24x+46
|
f(x)=3x^{2}-24x+46
|
y=x^2-10x+4
|
y=x^{2}-10x+4
|
f(x)=x^{1/3}+x
|
f(x)=x^{\frac{1}{3}}+x
|
f(x)=(4sin(x)-3)/(4+sin(x))
|
f(x)=\frac{4\sin(x)-3}{4+\sin(x)}
|
slope intercept of y-10=-2(x-3)
|
slope\:intercept\:y-10=-2(x-3)
|
y=10(t^3+4t^2+t-6)
|
y=10(t^{3}+4t^{2}+t-6)
|
f(x)={x+2:x<0,x^2-1:0<= x<= 3,8:x>3}
|
f(x)=\left\{x+2:x<0,x^{2}-1:0\le\:x\le\:3,8:x>3\right\}
|
f(x)=3-sin(x)
|
f(x)=3-\sin(x)
|
f(x)=-x^3-4x^2
|
f(x)=-x^{3}-4x^{2}
|
f(x)=4x^3+3x^2+6x+5
|
f(x)=4x^{3}+3x^{2}+6x+5
|
f(x)=x+ln(1-x)
|
f(x)=x+\ln(1-x)
|
f(x)=x^{10}*e^{2x}
|
f(x)=x^{10}\cdot\:e^{2x}
|
f(x)=(x-5)(x+1)(5x+15)
|
f(x)=(x-5)(x+1)(5x+15)
|
y=sqrt(2-x^2),0<= x<= sqrt(2)
|
y=\sqrt{2-x^{2}},0\le\:x\le\:\sqrt{2}
|
f(y)=(sin(y))/(1+cos(y))
|
f(y)=\frac{\sin(y)}{1+\cos(y)}
|
f(x)=(2/3)^x-2
|
f(x)=(\frac{2}{3})^{x}-2
|
F(x)=x^2-1
|
F(x)=x^{2}-1
|
f(x)=(1-sqrt(x))/(x-3)
|
f(x)=\frac{1-\sqrt{x}}{x-3}
|
f(a)=a^6+6a^3+9
|
f(a)=a^{6}+6a^{3}+9
|
f(x)= x/2+cos(x)
|
f(x)=\frac{x}{2}+\cos(x)
|
y=4x^2-16x+64
|
y=4x^{2}-16x+64
|
f(x)=e^{3x}-5x+3
|
f(x)=e^{3x}-5x+3
|
f(y)=(sin^2(y))/(y^2)
|
f(y)=\frac{\sin^{2}(y)}{y^{2}}
|
y=2x^2+9x+4
|
y=2x^{2}+9x+4
|
f(x)=(11-x)(x+1)^2
|
f(x)=(11-x)(x+1)^{2}
|
inverse of-36000+0.2w
|
inverse\:-36000+0.2w
|
f(x)=2x^3-24x+6
|
f(x)=2x^{3}-24x+6
|
U(x)=200x-x^2+8000
|
U(x)=200x-x^{2}+8000
|
f(x)=3sqrt(2+x)
|
f(x)=3\sqrt{2+x}
|
f(x)=((x-2))/((x-3)^2)
|
f(x)=\frac{(x-2)}{(x-3)^{2}}
|
f(x)=3x^4-2x^2+8
|
f(x)=3x^{4}-2x^{2}+8
|
f(x)=(1-xe^x)/(x+e^x)
|
f(x)=\frac{1-xe^{x}}{x+e^{x}}
|
f(a)=3a-1
|
f(a)=3a-1
|
f(x)=2^{3x-4}
|
f(x)=2^{3x-4}
|
f(x)=((3x^2+9))/((2x^2-16))
|
f(x)=\frac{(3x^{2}+9)}{(2x^{2}-16)}
|
f(x)=1+tan(x)tan(x/2)
|
f(x)=1+\tan(x)\tan(\frac{x}{2})
|
cot^2(x)
|
\cot^{2}(x)
|
f(x)= 1/(ln(5x-15))
|
f(x)=\frac{1}{\ln(5x-15)}
|
f(x)=5-7x
|
f(x)=5-7x
|
x=-12+8t+t^2
|
x=-12+8t+t^{2}
|
f(x)=2x^3+2x^2-24x
|
f(x)=2x^{3}+2x^{2}-24x
|
Y(x)=x^2-4
|
Y(x)=x^{2}-4
|
y=(2x+1)/(sqrt(4x-3))
|
y=\frac{2x+1}{\sqrt{4x-3}}
|
f(x)= x/(1+2x)
|
f(x)=\frac{x}{1+2x}
|
g(x)=1-2x-x^2
|
g(x)=1-2x-x^{2}
|
P(x)=x^4-16
|
P(x)=x^{4}-16
|
domain of (x+3)/(x^2-2x-8)
|
domain\:\frac{x+3}{x^{2}-2x-8}
|
midpoint (-5,3)(2,7)
|
midpoint\:(-5,3)(2,7)
|
f(x)=4(x-3)2+5
|
f(x)=4(x-3)2+5
|
|x-2|,x<2
|
\left|x-2\right|,x<2
|
y=(x^2-3x+1)/(x^2)
|
y=\frac{x^{2}-3x+1}{x^{2}}
|
x^2-7x+10
|
x^{2}-7x+10
|
y=e^x+4
|
y=e^{x}+4
|
f(x)=9x^3-4x^2+7x+3
|
f(x)=9x^{3}-4x^{2}+7x+3
|
f(x)=(2x-8)/(4x-3)
|
f(x)=\frac{2x-8}{4x-3}
|
f(t)=e^{3t}cos(4t)
|
f(t)=e^{3t}\cos(4t)
|
f(x)=sqrt(8+x)+sqrt(16-x)
|
f(x)=\sqrt{8+x}+\sqrt{16-x}
|
f(x)=-1/(e^x)
|
f(x)=-\frac{1}{e^{x}}
|
line (-2,1),(3,-1)
|
line\:(-2,1),(3,-1)
|
f(x)=25x^2-20x+4
|
f(x)=25x^{2}-20x+4
|