Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
domain of f(x)=2cos(y)-1
domain\:f(x)=2\cos(y)-1
domain of (x^2+5x+6)/(x+2)
domain\:\frac{x^{2}+5x+6}{x+2}
domain of f(x)=2sec(x)
domain\:f(x)=2\sec(x)
domain of y= 3/(x+1)
domain\:y=\frac{3}{x+1}
domain of f(x)= x/(2x-3)yg(x)=sqrt(x)
domain\:f(x)=\frac{x}{2x-3}yg(x)=\sqrt{x}
domain of y=(x+9)^{1/4}
domain\:y=(x+9)^{\frac{1}{4}}
domain of cos(x)+sin(2x+pi)
domain\:\cos(x)+\sin(2x+π)
domain of y=(log_{10}(x-3))/(sqrt(8-2x))
domain\:y=\frac{\log_{10}(x-3)}{\sqrt{8-2x}}
domain of f(x)= 1/(sqrt(x^2-5x+6))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-5x+6}}
domain of f(x)= 3/(3x-18)
domain\:f(x)=\frac{3}{3x-18}
domain of 3x^2+6x-9
domain\:3x^{2}+6x-9
domain of 7/(5x-25)
domain\:\frac{7}{5x-25}
domain of 0.5
domain\:0.5
domain of ln(8-2x^2)
domain\:\ln(8-2x^{2})
domain of f(x)=ln(ln|x|)
domain\:f(x)=\ln(\ln\left|x\right|)
domain of-e^{x+7}
domain\:-e^{x+7}
domain of f(x)=sqrt((x-1)/(x-3))
domain\:f(x)=\sqrt{\frac{x-1}{x-3}}
domain of f(x)=(3x^2-2x-1)/(x^2+3x-10)
domain\:f(x)=\frac{3x^{2}-2x-1}{x^{2}+3x-10}
domain of sec(3x)
domain\:\sec(3x)
domain of log_{3}(x-1)+3
domain\:\log_{3}(x-1)+3
domain of f(x)=-7/(2tsqrt(t))
domain\:f(x)=-\frac{7}{2t\sqrt{t}}
domain of f(x)=sqrt(1-\sqrt{1)}
domain\:f(x)=\sqrt{1-\sqrt{1}}
domain of-(1-x)/(1+x)
domain\:-\frac{1-x}{1+x}
domain of f(x)=((sqrt(x+8)))/(x-8)
domain\:f(x)=\frac{(\sqrt{x+8})}{x-8}
domain of f(x)= 1/(ln(sqrt(x)))
domain\:f(x)=\frac{1}{\ln(\sqrt{x})}
domain of (x-2)^2+5
domain\:(x-2)^{2}+5
domain of (x-2)^2+2
domain\:(x-2)^{2}+2
domain of (x-2)^2-4
domain\:(x-2)^{2}-4
domain of f(x)=log_{10}(|3x+6|)
domain\:f(x)=\log_{10}(\left|3x+6\right|)
amplitude of-1/5 cos(1/5 x)
amplitude\:-\frac{1}{5}\cos(\frac{1}{5}x)
domain of (2+x-x^2)/((x-1)^2)
domain\:\frac{2+x-x^{2}}{(x-1)^{2}}
domain of sqrt(x+5)+sqrt(5-x)
domain\:\sqrt{x+5}+\sqrt{5-x}
domain of 3x-1/5
domain\:3x-\frac{1}{5}
domain of f(x)= 1/((y-2)(y-8))
domain\:f(x)=\frac{1}{(y-2)(y-8)}
domain of (sqrt(1-2x))/(x/(x^2-1))
domain\:\frac{\sqrt{1-2x}}{\frac{x}{x^{2}-1}}
domain of f(x)=log_{4}(1/4 x-12)
domain\:f(x)=\log_{4}(\frac{1}{4}x-12)
domain of ln(3x+4)
domain\:\ln(3x+4)
domain of f(x)=(3x+2)/(x-2)
domain\:f(x)=\frac{3x+2}{x-2}
critical points of |sin(4x)+5cos(4x)|
critical\:points\:|\sin(4x)+5\cos(4x)|
domain of f(x)=x+1,x<-1
domain\:f(x)=x+1,x<-1
domain of f(x)=(4x)/(-3x+11)
domain\:f(x)=\frac{4x}{-3x+11}
domain of 2x^2-x+4
domain\:2x^{2}-x+4
domain of f(x)=log_{10}(2x-1)-1
domain\:f(x)=\log_{10}(2x-1)-1
domain of f(x)=sqrt(ln(x^4-15))
domain\:f(x)=\sqrt{\ln(x^{4}-15)}
domain of Y(x)=(x^2+3)/(x^2+x)
domain\:Y(x)=\frac{x^{2}+3}{x^{2}+x}
domain of f(x)=sqrt((x-2)*(x^2+3))
domain\:f(x)=\sqrt{(x-2)\cdot\:(x^{2}+3)}
domain of f(x)=\sqrt[9]{5x+3}
domain\:f(x)=\sqrt[9]{5x+3}
domain of f(x)=sqrt(-x^3-2x^2+25x+50)
domain\:f(x)=\sqrt{-x^{3}-2x^{2}+25x+50}
inverse of f(x)=(3x+2)/(2x-1)
inverse\:f(x)=\frac{3x+2}{2x-1}
range of 1/(sqrt(e^x+1))
range\:\frac{1}{\sqrt{e^{x}+1}}
domain of f(x)=\sqrt[3]{x/(x-2)}
domain\:f(x)=\sqrt[3]{\frac{x}{x-2}}
domain of f(x)=10x-2
domain\:f(x)=10x-2
domain of f(x)=sqrt(-x)x<= 0
domain\:f(x)=\sqrt{-x}x\le\:0
domain of f(x)=(x^2-x-6)/(x^2-4)
domain\:f(x)=\frac{x^{2}-x-6}{x^{2}-4}
domain of f(x)=(sqrt(x-3))/2+3
domain\:f(x)=\frac{\sqrt{x-3}}{2}+3
domain of (3x+1)/(x^3-5x^2+6x)
domain\:\frac{3x+1}{x^{3}-5x^{2}+6x}
domain of 2^{x-3}+4
domain\:2^{x-3}+4
domain of p(t)= t/(2t+8)
domain\:p(t)=\frac{t}{2t+8}
inflection points of f(x)=18x^4-108x^2
inflection\:points\:f(x)=18x^{4}-108x^{2}
domain of 2^{x-3}-5
domain\:2^{x-3}-5
domain of y= 3/(x-4)
domain\:y=\frac{3}{x-4}
domain of g(x)=log_{2}(x+3)
domain\:g(x)=\log_{2}(x+3)
domain of f(x)=5x-20
domain\:f(x)=5x-20
domain of f(x)=e^{3x-1}-2
domain\:f(x)=e^{3x-1}-2
domain of (x^4+3)/x
domain\:\frac{x^{4}+3}{x}
domain of f(x)=(x-4)/(x^2+13x+36)
domain\:f(x)=\frac{x-4}{x^{2}+13x+36}
domain of f(x)=((x-3))/(x^2-9)
domain\:f(x)=\frac{(x-3)}{x^{2}-9}
domain of f(x)=\sqrt[3]{x/(x-3)}
domain\:f(x)=\sqrt[3]{\frac{x}{x-3}}
domain of 1/(x+25)
domain\:\frac{1}{x+25}
inverse of f(x)=2+\sqrt[3]{2-3x}
inverse\:f(x)=2+\sqrt[3]{2-3x}
domain of 5sqrt(9-x^2)
domain\:5\sqrt{9-x^{2}}
domain of-(2x)/((x^2-49)^2)
domain\:-\frac{2x}{(x^{2}-49)^{2}}
domain of f(y)=sqrt(1-y^2)
domain\:f(y)=\sqrt{1-y^{2}}
domain of sin^2(x)+cos(x)
domain\:\sin^{2}(x)+\cos(x)
domain of 26x^5
domain\:26x^{5}
domain of sin(x)+2
domain\:\sin(x)+2
domain of f(x)= 1/x e^{-x}
domain\:f(x)=\frac{1}{x}e^{-x}
domain of (2x-5)*(2x+5)
domain\:(2x-5)\cdot\:(2x+5)
domain of f(x)=sqrt(x5+x2-x+1)
domain\:f(x)=\sqrt{x5+x2-x+1}
domain of f(x)=9ln(x+3)(9x)+8
domain\:f(x)=9\ln(x+3)(9x)+8
domain of y=(4x^2-5)/(2x^3+x)
domain\:y=\frac{4x^{2}-5}{2x^{3}+x}
domain of y=(2x^3+x-3)/(x^2+1)
domain\:y=\frac{2x^{3}+x-3}{x^{2}+1}
domain of g(x)=ln(x)
domain\:g(x)=\ln(x)
domain of f(x)=sqrt(5x-30)+ln(21-3x)
domain\:f(x)=\sqrt{5x-30}+\ln(21-3x)
domain of y=-(1-x)^2+3
domain\:y=-(1-x)^{2}+3
domain of |x|+x
domain\:\left|x\right|+x
domain of |x|-5
domain\:\left|x\right|-5
domain of f(x)=(3x+4)/(x^2-5x+6)
domain\:f(x)=\frac{3x+4}{x^{2}-5x+6}
domain of-(19)/((3+x)^2)
domain\:-\frac{19}{(3+x)^{2}}
domain of sin(x)-cos(x)
domain\:\sin(x)-\cos(x)
domain of f(x)=sqrt(t-25)
domain\:f(x)=\sqrt{t-25}
asymptotes of f(x)=(-x^2+25)/(4x+20)
asymptotes\:f(x)=\frac{-x^{2}+25}{4x+20}
domain of f(x)=x^2<1
domain\:f(x)=x^{2}<1
domain of f(x)= 4/(2+3*2^x)
domain\:f(x)=\frac{4}{2+3\cdot\:2^{x}}
domain of sqrt((x^2-8)/4)+sqrt(9x^2+8)
domain\:\sqrt{\frac{x^{2}-8}{4}}+\sqrt{9x^{2}+8}
domain of f(x)=sqrt(25-x^2)+sqrt(-(x-2))
domain\:f(x)=\sqrt{25-x^{2}}+\sqrt{-(x-2)}
domain of f(x)=(x^2-10)/(x^2-9)
domain\:f(x)=\frac{x^{2}-10}{x^{2}-9}
domain of (x^2)/(4-x^2)
domain\:\frac{x^{2}}{4-x^{2}}
domain of y=2x-2
domain\:y=2x-2
domain of f(x)=sqrt((-2x+3))
domain\:f(x)=\sqrt{(-2x+3)}
1
..
277
278
279
280
281
282
283
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback