domain of x+(a^2)/x
|
domain\:x+\frac{a^{2}}{x}
|
domain of f(x)=(8x)/((1-sqrt(x-3)))
|
domain\:f(x)=\frac{8x}{(1-\sqrt{x-3})}
|
domain of f(x)= 1/(x^2-4x-12)
|
domain\:f(x)=\frac{1}{x^{2}-4x-12}
|
domain of f(x)=pix^2sqrt(3-x^2)*1/3
|
domain\:f(x)=πx^{2}\sqrt{3-x^{2}}\cdot\:\frac{1}{3}
|
domain of-2(x+1)^2+4
|
domain\:-2(x+1)^{2}+4
|
domain of sqrt(9x^4+15x^2+6)
|
domain\:\sqrt{9x^{4}+15x^{2}+6}
|
domain of (x^2-2x-8)/(x^2-25)
|
domain\:\frac{x^{2}-2x-8}{x^{2}-25}
|
domain of x^2+x-10
|
domain\:x^{2}+x-10
|
midpoint (4,-1)(7,8)
|
midpoint\:(4,-1)(7,8)
|
domain of f(x)=(4x-1)/(x-2)
|
domain\:f(x)=\frac{4x-1}{x-2}
|
domain of (3x)/(x+3)
|
domain\:\frac{3x}{x+3}
|
domain of f(x)=(sqrt(2+x))/(2-x)
|
domain\:f(x)=\frac{\sqrt{2+x}}{2-x}
|
domain of (x+3)/(x^3+27)
|
domain\:\frac{x+3}{x^{3}+27}
|
domain of f(x)=sqrt(x+5)*9/(x+4)
|
domain\:f(x)=\sqrt{x+5}\cdot\:\frac{9}{x+4}
|
domain of (sqrt(2-x))/(x+7)
|
domain\:\frac{\sqrt{2-x}}{x+7}
|
domain of sqrt((x+8)(x+2))
|
domain\:\sqrt{(x+8)(x+2)}
|
domain of f(x)=x^{2-x^2},0<= x<= 1
|
domain\:f(x)=x^{2-x^{2}},0\le\:x\le\:1
|
domain of 24x^2-15253x+591064
|
domain\:24x^{2}-15253x+591064
|
range of (sqrt(2+x))/(3-x)
|
range\:\frac{\sqrt{2+x}}{3-x}
|
domain of h(x)=*f(x)=sqrt(5-x)*(x^2-1)
|
domain\:h(x)=\cdot\:f(x)=\sqrt{5-x}\cdot\:(x^{2}-1)
|
domain of f(x)= 1/(x^2+4x-60)
|
domain\:f(x)=\frac{1}{x^{2}+4x-60}
|
domain of f(x)=(e^x)/(1+e^{2x)}
|
domain\:f(x)=\frac{e^{x}}{1+e^{2x}}
|
domain of f(x)=sqrt(2t-3)
|
domain\:f(x)=\sqrt{2t-3}
|
domain of (sqrt(x))/(18x^2-33x-40)
|
domain\:\frac{\sqrt{x}}{18x^{2}-33x-40}
|
domain of f(x)=sqrt(x+6)-8
|
domain\:f(x)=\sqrt{x+6}-8
|
domain of sin(arccos(x-1))
|
domain\:\sin(\arccos(x-1))
|
domain of f(x)=-x^2+8x-8
|
domain\:f(x)=-x^{2}+8x-8
|
domain of f(x)=((x5^x))/(5^{(x+3))-6}
|
domain\:f(x)=\frac{(x5^{x})}{5^{(x+3)}-6}
|
domain of f(x)=((a,b))/a b=12
|
domain\:f(x)=\frac{(a,b)}{a}b=12
|
slope of 6x-3y=18
|
slope\:6x-3y=18
|
domain of f(x,y)=|x-2y|<2
|
domain\:f(x,y)=\left|x-2y\right|<2
|
domain of f(x)=(x^2)/(e^x)
|
domain\:f(x)=\frac{x^{2}}{e^{x}}
|
domain of-3^x-2
|
domain\:-3^{x}-2
|
domain of f(x)=(x-6)/(x^2)
|
domain\:f(x)=\frac{x-6}{x^{2}}
|
domain of f(x)=ln(y^2-1)
|
domain\:f(x)=\ln(y^{2}-1)
|
domain of 4sqrt(x)+1
|
domain\:4\sqrt{x}+1
|
domain of f(x)=sqrt(-3x)+5-sqrt(x-1)
|
domain\:f(x)=\sqrt{-3x}+5-\sqrt{x-1}
|
domain of f(x)=x<2
|
domain\:f(x)=x<2
|
periodicity of f(x)=cos(2x-(pi)/2)
|
periodicity\:f(x)=\cos(2x-\frac{\pi}{2})
|
inverse of f(x)=(x^5)/7
|
inverse\:f(x)=\frac{x^{5}}{7}
|
domain of f(x)=900cos(2x)+800
|
domain\:f(x)=900\cos(2x)+800
|
domain of f(x)=x>7
|
domain\:f(x)=x>7
|
domain of h(x)=log_{1/2}(|x|)
|
domain\:h(x)=\log_{\frac{1}{2}}(\left|x\right|)
|
domain of f(x)=x=4
|
domain\:f(x)=x=4
|
domain of f(x)=(3x-8)/(4x^2+5)
|
domain\:f(x)=\frac{3x-8}{4x^{2}+5}
|
domain of f(x)=sqrt(5-3)+(x+1)/(4x-8)
|
domain\:f(x)=\sqrt{5-3}+\frac{x+1}{4x-8}
|
domain of f(x)=(x-1)*e^{-1/x}
|
domain\:f(x)=(x-1)\cdot\:e^{-\frac{1}{x}}
|
domain of f(t)=2t+t^2
|
domain\:f(t)=2t+t^{2}
|
domain of f(x)=sqrt(4x+12)+1/(x+2)
|
domain\:f(x)=\sqrt{4x+12}+\frac{1}{x+2}
|
domain of f(x)=3(x-4)^2-8
|
domain\:f(x)=3(x-4)^{2}-8
|
extreme points of f(x)=500+10x^2
|
extreme\:points\:f(x)=500+10x^{2}
|
domain of (x^2-4)/(x^2+4)
|
domain\:\frac{x^{2}-4}{x^{2}+4}
|
domain of f(x)=-5+8x-x^2
|
domain\:f(x)=-5+8x-x^{2}
|
domain of (x^2-4)/(x^2+6)
|
domain\:\frac{x^{2}-4}{x^{2}+6}
|
domain of 25x
|
domain\:25x
|
domain of f(x)=10-x^{-2}
|
domain\:f(x)=10-x^{-2}
|
domain of f(x)=(x-9)/(x^2-17x+72)
|
domain\:f(x)=\frac{x-9}{x^{2}-17x+72}
|
domain of log_{x+3}(5)
|
domain\:\log_{x+3}(5)
|
domain of 5x^4-3x^2+7
|
domain\:5x^{4}-3x^{2}+7
|
domain of f(x)=(x-4)/(x^2-7x+12)
|
domain\:f(x)=\frac{x-4}{x^{2}-7x+12}
|
monotone intervals f(x)=x^5-5x^3
|
monotone\:intervals\:f(x)=x^{5}-5x^{3}
|
domain of 3.6
|
domain\:3.6
|
domain of f(x)=y-2
|
domain\:f(x)=y-2
|
domain of f(x)=(sqrt(3x^2+2x))/(x^2-1)
|
domain\:f(x)=\frac{\sqrt{3x^{2}+2x}}{x^{2}-1}
|
domain of f(x)= 1/(x+1)+2
|
domain\:f(x)=\frac{1}{x+1}+2
|
domain of (5t)/(2t^2+7)
|
domain\:\frac{5t}{2t^{2}+7}
|
domain of sqrt(log_{2)(x-1)}
|
domain\:\sqrt{\log_{2}(x-1)}
|
domain of f(x)=(x+2)2
|
domain\:f(x)=(x+2)2
|
domain of f(x)=y+2
|
domain\:f(x)=y+2
|
domain of ((x-2)(x-3))/((x+2)(x-6))
|
domain\:\frac{(x-2)(x-3)}{(x+2)(x-6)}
|
domain of 1/(3sqrt(x)-9)
|
domain\:\frac{1}{3\sqrt{x}-9}
|
range of x^2+4
|
range\:x^{2}+4
|
domain of sqrt((x+4)/(x^2-5x+6))
|
domain\:\sqrt{\frac{x+4}{x^{2}-5x+6}}
|
domain of f(x)=(sqrt(x^2-4)+1)/(x-2)
|
domain\:f(x)=\frac{\sqrt{x^{2}-4}+1}{x-2}
|
domain of f(x)=(x^2+7x+10)/(x^2-x-12)
|
domain\:f(x)=\frac{x^{2}+7x+10}{x^{2}-x-12}
|
domain of y=tan(2x-pi/3)
|
domain\:y=\tan(2x-\frac{π}{3})
|
domain of f(x)=sqrt(-2)
|
domain\:f(x)=\sqrt{-2}
|
domain of f(x)=-3/2 (4)^{x-3}-1
|
domain\:f(x)=-\frac{3}{2}(4)^{x-3}-1
|
domain of f(x)=(x^2)/(sqrt(x-4))
|
domain\:f(x)=\frac{x^{2}}{\sqrt{x-4}}
|
domain of-sqrt(2x+1)
|
domain\:-\sqrt{2x+1}
|
domain of f(x)=log_{10}(8/(x+5))
|
domain\:f(x)=\log_{10}(\frac{8}{x+5})
|
domain of 8-4x
|
domain\:8-4x
|
inverse of f(x)=20-2x
|
inverse\:f(x)=20-2x
|
domain of f(x)=sqrt(4x+6)
|
domain\:f(x)=\sqrt{4x+6}
|
domain of (2/(x+1))/(x/(x+1))
|
domain\:\frac{\frac{2}{x+1}}{\frac{x}{x+1}}
|
domain of f(x)=x^5-3x^4+1
|
domain\:f(x)=x^{5}-3x^{4}+1
|
domain of y=3sqrt(x)
|
domain\:y=3\sqrt{x}
|
domain of arccos(3-2x)
|
domain\:\arccos(3-2x)
|
domain of f(x)=sqrt(8ax+1)
|
domain\:f(x)=\sqrt{8ax+1}
|
domain of f(x)=(x+4)/(x^2+6x-27)
|
domain\:f(x)=\frac{x+4}{x^{2}+6x-27}
|
domain of f(x)=(8x)/(9x-7)
|
domain\:f(x)=\frac{8x}{9x-7}
|
domain of f(x)=(sqrt(1-x^2))/x
|
domain\:f(x)=\frac{\sqrt{1-x^{2}}}{x}
|
domain of f(x)=(x-7)/(x^2-x-42)
|
domain\:f(x)=\frac{x-7}{x^{2}-x-42}
|
domain of 1/2 sqrt(x)
|
domain\:\frac{1}{2}\sqrt{x}
|
domain of f(x)= 1/(3x^2+4)
|
domain\:f(x)=\frac{1}{3x^{2}+4}
|
domain of y=sqrt(2-x)+sqrt(1+x)
|
domain\:y=\sqrt{2-x}+\sqrt{1+x}
|
domain of f(x)=(sqrt(9-x^2))/(ln(x^2-4))
|
domain\:f(x)=\frac{\sqrt{9-x^{2}}}{\ln(x^{2}-4)}
|
domain of (5x)/(2x+5)
|
domain\:\frac{5x}{2x+5}
|
domain of (x+3)^2-2
|
domain\:(x+3)^{2}-2
|
domain of f(x)=25x+36
|
domain\:f(x)=25x+36
|