Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
critical f(x)=x^2-4x
critical\:f(x)=x^{2}-4x
domain of f(x)=x^4+2
domain\:f(x)=x^{4}+2
intercepts of f(x)=(-30(x-1)^2)/(x-5)
intercepts\:f(x)=\frac{-30(x-1)^{2}}{x-5}
slope ofintercept x=-3
slopeintercept\:x=-3
critical x^{5/2}-3x^2
critical\:x^{\frac{5}{2}}-3x^{2}
perpendicular 2= 7/5 (-5)+b
perpendicular\:2=\frac{7}{5}(-5)+b
asymptotes of (x^2+2x-15)/(x-4)
asymptotes\:\frac{x^{2}+2x-15}{x-4}
domain of 2^{x-1}
domain\:2^{x-1}
inverse of f(x)=-21/41 ln(4100x-20601)
inverse\:f(x)=-\frac{21}{41}\ln(4100x-20601)
domain of f(x)=4x^2-5x+8
domain\:f(x)=4x^{2}-5x+8
critical (-5)/(2x-7)
critical\:\frac{-5}{2x-7}
slope of 6x+10y=8
slope\:6x+10y=8
distance (a,-2a),(-a,-a)
distance\:(a,-2a),(-a,-a)
domain of f(x)=x*sqrt(x)
domain\:f(x)=x\cdot\:\sqrt{x}
domain of f(x)= 5/(x+7)
domain\:f(x)=\frac{5}{x+7}
symmetry 3x^2+7x+5DE
symmetry\:3x^{2}+7x+5DE
inverse of f(x)= 4/(x-1)+3
inverse\:f(x)=\frac{4}{x-1}+3
extreme f(x)=e^t-t
extreme\:f(x)=e^{t}-t
simplify (1.1)(5.5)
simplify\:(1.1)(5.5)
critical f(x)=2x^3-15x^2+36x+1
critical\:f(x)=2x^{3}-15x^{2}+36x+1
line (4,1),(12,6)
line\:(4,1),(12,6)
slope ofintercept 15x-16y=-16
slopeintercept\:15x-16y=-16
extreme y=x^2+x-6
extreme\:y=x^{2}+x-6
inverse of f(x)= 2/(-x+1)-2
inverse\:f(x)=\frac{2}{-x+1}-2
asymptotes of (x^2-2x-8)/(x^2-7x+12)
asymptotes\:\frac{x^{2}-2x-8}{x^{2}-7x+12}
asymptotes of f(x)=(-7x^2+1)/(x^2+x+8)
asymptotes\:f(x)=\frac{-7x^{2}+1}{x^{2}+x+8}
intercepts of f(x)=x^2+36
intercepts\:f(x)=x^{2}+36
perpendicular-2x
perpendicular\:-2x
domain of f(x)= 4/(3/x-1)
domain\:f(x)=\frac{4}{\frac{3}{x}-1}
domain of-1/x
domain\:-\frac{1}{x}
inverse of f(x)=(7\sqrt[5]{x}-5)/4
inverse\:f(x)=\frac{7\sqrt[5]{x}-5}{4}
slope ofintercept 5x-4y=20
slopeintercept\:5x-4y=20
inverse of f(x)=2x-2
inverse\:f(x)=2x-2
y=-(|x|-1)^2
y=-(\left|x\right|-1)^{2}
range of (9(2+sqrt(x)))/(4-x)
range\:\frac{9(2+\sqrt{x})}{4-x}
inverse of f(x)=log_{2}(x)
inverse\:f(x)=\log_{2}(x)
domain of 2/(x-3)
domain\:\frac{2}{x-3}
domain of f(x)=log_{2}(2-|2-x|)
domain\:f(x)=\log_{2}(2-\left|2-x\right|)
domain of sqrt(2-x)+sqrt(x+2)
domain\:\sqrt{2-x}+\sqrt{x+2}
asymptotes of f(x)=(x+1)/(2x-3)
asymptotes\:f(x)=\frac{x+1}{2x-3}
simplify (2.1)(6.3)
simplify\:(2.1)(6.3)
critical f(x)=5(x-2)^{2/3}
critical\:f(x)=5(x-2)^{\frac{2}{3}}
domain of f(x)=sqrt(-x^2-17x-72)
domain\:f(x)=\sqrt{-x^{2}-17x-72}
domain of f(x)=(7x)/(x(x^2-16))
domain\:f(x)=\frac{7x}{x(x^{2}-16)}
inverse of f(x)=3(2)^{x+1}-2
inverse\:f(x)=3(2)^{x+1}-2
domain of f(x)=sqrt((4-x^2)/(5-3x-2x^2))
domain\:f(x)=\sqrt{\frac{4-x^{2}}{5-3x-2x^{2}}}
asymptotes of f(x)=(1-5x)/(x+5)
asymptotes\:f(x)=\frac{1-5x}{x+5}
line (0.0183,0.1221),(0.293,2.059)
line\:(0.0183,0.1221),(0.293,2.059)
parallel 6x-7y=35
parallel\:6x-7y=35
midpoint (0,3),(-4,-5)
midpoint\:(0,3),(-4,-5)
slope ofintercept 4x-3y=-17
slopeintercept\:4x-3y=-17
intercepts of f(x)=(3x)/(x+1)
intercepts\:f(x)=\frac{3x}{x+1}
intercepts of f(x)=(x-2)/(x-4)
intercepts\:f(x)=\frac{x-2}{x-4}
inverse of f(x)=sqrt(x^2-11x)
inverse\:f(x)=\sqrt{x^{2}-11x}
range of f(x)=(x-4)/(sqrt(x+2))
range\:f(x)=\frac{x-4}{\sqrt{x+2}}
intercepts of f(x)=-x^3-4x^2+8x
intercepts\:f(x)=-x^{3}-4x^{2}+8x
line (-4,0),(4,0)
line\:(-4,0),(4,0)
domain of (5+x)/(1-5x)
domain\:\frac{5+x}{1-5x}
domain of (x^2-8x+12)/(x^2-2x-24)
domain\:\frac{x^{2}-8x+12}{x^{2}-2x-24}
critical f(x)= x/(x^2+11x+28)
critical\:f(x)=\frac{x}{x^{2}+11x+28}
parity (tan(x))/x
parity\:\frac{\tan(x)}{x}
extreme f(x)=3sqrt(x-2)
extreme\:f(x)=3\sqrt{x-2}
parity (tan(x^5))/(x^3)
parity\:\frac{\tan(x^{5})}{x^{3}}
domain of f(x)=(4x^2-5)/(2x^2+8)
domain\:f(x)=\frac{4x^{2}-5}{2x^{2}+8}
inverse of f(x)=2sqrt(x)-8
inverse\:f(x)=2\sqrt{x}-8
inverse of f(x)=(7x+3)/(x+8)
inverse\:f(x)=\frac{7x+3}{x+8}
intercepts of (x(x+3))/(x^2+x-6)
intercepts\:\frac{x(x+3)}{x^{2}+x-6}
parity f(x)=-x^4-2x-,2<= x<= 0
parity\:f(x)=-x^{4}-2x-,2\le\:x\le\:0
critical f(x)=2cos(x)+sin(2x)
critical\:f(x)=2\cos(x)+\sin(2x)
inverse of f(x)=4525
inverse\:f(x)=4525
inverse of f(x)=3-sqrt(x)
inverse\:f(x)=3-\sqrt{x}
parity csc(x)dx
parity\:\csc(x)dx
slope of y=12
slope\:y=12
domain of y=sqrt(-x+7)
domain\:y=\sqrt{-x+7}
range of f(x)= x/(9x+3)
range\:f(x)=\frac{x}{9x+3}
distance (2,8),(4,7)
distance\:(2,8),(4,7)
shift f(x)=-cos(1/2 (x+pi/2))
shift\:f(x)=-\cos(\frac{1}{2}(x+\frac{π}{2}))
midpoint (6,-6),(-7,8)
midpoint\:(6,-6),(-7,8)
extreme f(x)=(x^2)/(x-5)
extreme\:f(x)=\frac{x^{2}}{x-5}
domain of f(x)=8x+12
domain\:f(x)=8x+12
asymptotes of f(x)= 4/(x+3)+2
asymptotes\:f(x)=\frac{4}{x+3}+2
slope of y= 1/3 x+3
slope\:y=\frac{1}{3}x+3
inverse of g(x)=-x+3
inverse\:g(x)=-x+3
intercepts of f(x)=(x-1)
intercepts\:f(x)=(x-1)
domain of f(x)=arctan(x)
domain\:f(x)=\arctan(x)
domain of f(x)=sqrt(5x+25)
domain\:f(x)=\sqrt{5x+25}
asymptotes of f(x)=(3x^2-17x+24)/(6x-16)
asymptotes\:f(x)=\frac{3x^{2}-17x+24}{6x-16}
critical (x^2)/(x^2-4)
critical\:\frac{x^{2}}{x^{2}-4}
domain of f(x)= 5/(x-3)
domain\:f(x)=\frac{5}{x-3}
slope of x=7y
slope\:x=7y
extreme f(x)=x^3-x^2
extreme\:f(x)=x^{3}-x^{2}
inverse of y= 1/(3x-2)
inverse\:y=\frac{1}{3x-2}
domain of f(n)= n/((8-4n))
domain\:f(n)=\frac{n}{(8-4n)}
parity f(x)=x^5+5x
parity\:f(x)=x^{5}+5x
inverse of f(x)=x^4-9
inverse\:f(x)=x^{4}-9
domain of 3x+1
domain\:3x+1
extreme f(x)=(x^4)/(x+12)
extreme\:f(x)=\frac{x^{4}}{x+12}
inverse of (x+3)/(x-2)
inverse\:\frac{x+3}{x-2}
asymptotes of 1/(x+6)
asymptotes\:\frac{1}{x+6}
intercepts of f(x)=3x-5y=11
intercepts\:f(x)=3x-5y=11
1
..
183
184
185
186
187
..
1324