inverse of cos(-9/(sqrt(161)))
|
inverse\:\cos(-\frac{9}{\sqrt{161}})
|
inverse of f(x)=10^{(-1*((x+5))/6)}
|
inverse\:f(x)=10^{(-1\cdot\:\frac{(x+5)}{6})}
|
inverse of f(x)=124.5+45(10)-0.03(10)^2
|
inverse\:f(x)=124.5+45(10)-0.03(10)^{2}
|
amplitude of-2+sin(x+(pi)/3)
|
amplitude\:-2+\sin(x+\frac{\pi}{3})
|
inverse of f(x)=36x^2e^{-12}
|
inverse\:f(x)=36x^{2}e^{-12}
|
inverse of f(x)=y=-5x^3-1
|
inverse\:f(x)=y=-5x^{3}-1
|
inverse of tan(x)-1/(sqrt(3))
|
inverse\:\tan(x)-\frac{1}{\sqrt{3}}
|
inverse of f(x)=sqrt(x^2-x-6)
|
inverse\:f(x)=\sqrt{x^{2}-x-6}
|
inverse of w
|
inverse\:w
|
inverse of f(x)=9t+8
|
inverse\:f(x)=9t+8
|
inverse of h(x)=(2x)/x
|
inverse\:h(x)=\frac{2x}{x}
|
inverse of (x-1)^2+3
|
inverse\:(x-1)^{2}+3
|
inverse of (x-1)^2+1
|
inverse\:(x-1)^{2}+1
|
inverse of f(x)=-8/(x-9)
|
inverse\:f(x)=-\frac{8}{x-9}
|
asymptotes of f(x)=(x+4)/(x^3-12x^2+32x)
|
asymptotes\:f(x)=\frac{x+4}{x^{3}-12x^{2}+32x}
|
inverse of f(x)=(2x-9)/5
|
inverse\:f(x)=\frac{2x-9}{5}
|
inverse of A
|
inverse\:A
|
inverse of (x+1)(x-7)
|
inverse\:(x+1)(x-7)
|
inverse of f(x)=25-x^2,x>= 0
|
inverse\:f(x)=25-x^{2},x\ge\:0
|
inverse of m
|
inverse\:m
|
inverse of f(x)=(3x+1)/(4x+7)
|
inverse\:f(x)=\frac{3x+1}{4x+7}
|
inverse of f(x)=1x+4.1
|
inverse\:f(x)=1x+4.1
|
inverse of (x-1)^2-5
|
inverse\:(x-1)^{2}-5
|
inverse of 2x^2-12x+3
|
inverse\:2x^{2}-12x+3
|
inverse of f(x)=(-5x-7)/2
|
inverse\:f(x)=\frac{-5x-7}{2}
|
intercepts of f(x)=2x^2-x+7
|
intercepts\:f(x)=2x^{2}-x+7
|
inverse of e^{x-3}
|
inverse\:e^{x-3}
|
inverse of f(x)=5-3x=11
|
inverse\:f(x)=5-3x=11
|
inverse of f(x)=(6-6x)/(5-4x)
|
inverse\:f(x)=\frac{6-6x}{5-4x}
|
inverse of f(x)=21x^2-26x
|
inverse\:f(x)=21x^{2}-26x
|
inverse of f(x)=2sin(-x+1)
|
inverse\:f(x)=2\sin(-x+1)
|
inverse of f(x)=((x-2))/4
|
inverse\:f(x)=\frac{(x-2)}{4}
|
inverse of f(x)=17+2.5x
|
inverse\:f(x)=17+2.5x
|
inverse of f(x)=((e^x))/(1+7e^x)
|
inverse\:f(x)=\frac{(e^{x})}{1+7e^{x}}
|
inverse of (2x-1)/(x-1)
|
inverse\:\frac{2x-1}{x-1}
|
inverse of log_{10}(4.8)
|
inverse\:\log_{10}(4.8)
|
line (-10,21)(8,-6)
|
line\:(-10,21)(8,-6)
|
inverse of f(x)=(4x+2)/(5x-5)
|
inverse\:f(x)=\frac{4x+2}{5x-5}
|
inverse of sqrt(3-s)-sqrt(2+s)
|
inverse\:\sqrt{3-s}-\sqrt{2+s}
|
inverse of y=(x+4)^4+3,x>=-4
|
inverse\:y=(x+4)^{4}+3,x\ge\:-4
|
inverse of 2/5 x-4
|
inverse\:\frac{2}{5}x-4
|
inverse of f(x)=35(3)^x
|
inverse\:f(x)=35(3)^{x}
|
inverse of ((2-jw))/((-w^2+4jw+3))
|
inverse\:\frac{(2-jw)}{(-w^{2}+4jw+3)}
|
inverse of f(x)=((x-2))/5
|
inverse\:f(x)=\frac{(x-2)}{5}
|
inverse of f(x)=-(x-1)^{1/2}-1
|
inverse\:f(x)=-(x-1)^{\frac{1}{2}}-1
|
inverse of y=3(36+x^2)^{-1/2}
|
inverse\:y=3(36+x^{2})^{-\frac{1}{2}}
|
inverse of f(x)=3-log_{2}(x)
|
inverse\:f(x)=3-\log_{2}(x)
|
midpoint (0,6)(-2,-3)
|
midpoint\:(0,6)(-2,-3)
|
inverse of f(x)=y=-1/2 x-4
|
inverse\:f(x)=y=-\frac{1}{2}x-4
|
inverse of 11s^2+8s+2.5
|
inverse\:11s^{2}+8s+2.5
|
inverse of f(x)=ln(1/2 x)
|
inverse\:f(x)=\ln(\frac{1}{2}x)
|
inverse of f(x)=x+(4.23)/(7195*x)
|
inverse\:f(x)=x+\frac{4.23}{7195\cdot\:x}
|
inverse of f(x)=x^2-2x-1,1<= x<infinity
|
inverse\:f(x)=x^{2}-2x-1,1\le\:x<\infty\:
|
inverse of 49-x^2
|
inverse\:49-x^{2}
|
inverse of f(x)=2x^2-2x-12
|
inverse\:f(x)=2x^{2}-2x-12
|
inverse of (5z+1)/(4z^2+4z+1)
|
inverse\:\frac{5z+1}{4z^{2}+4z+1}
|
inverse of f(x)=(x^2-2x)/(x-2)
|
inverse\:f(x)=\frac{x^{2}-2x}{x-2}
|
inverse of 40(x-1)+6+(-33)(1-x/(0.4))^2
|
inverse\:40(x-1)+6+(-33)(1-\frac{x}{0.4})^{2}
|
distance (1,5)(-7,8)
|
distance\:(1,5)(-7,8)
|
inverse of y=x^3-6
|
inverse\:y=x^{3}-6
|
inverse of f(x)=13-\sqrt[3]{45-8}
|
inverse\:f(x)=13-\sqrt[3]{45-8}
|
inverse of f(x)=2x^2-x+3
|
inverse\:f(x)=2x^{2}-x+3
|
inverse of f(x)=e^{-x+2}-1
|
inverse\:f(x)=e^{-x+2}-1
|
inverse of e^e
|
inverse\:e^{e}
|
inverse of tan(7/4)
|
inverse\:\tan(\frac{7}{4})
|
inverse of-x^2-4x+5
|
inverse\:-x^{2}-4x+5
|
inverse of f(x)=2^{x-5}*0.44
|
inverse\:f(x)=2^{x-5}\cdot\:0.44
|
inverse of Y(x)=x^4+1
|
inverse\:Y(x)=x^{4}+1
|
inverse of f(x)=1+(1/2)^{(x^2-1)}
|
inverse\:f(x)=1+(\frac{1}{2})^{(x^{2}-1)}
|
inflection points of (x+1)/(x-2)
|
inflection\:points\:\frac{x+1}{x-2}
|
inverse of f(x)=18x+32
|
inverse\:f(x)=18x+32
|
inverse of (13)/(x+7)
|
inverse\:\frac{13}{x+7}
|
inverse of f(x)=-9x=36
|
inverse\:f(x)=-9x=36
|
inverse of (x+3)^2(x-3)^2
|
inverse\:(x+3)^{2}(x-3)^{2}
|
inverse of f(x)(x-1)=2x
|
inverse\:f(x)(x-1)=2x
|
inverse of f(x)=arccos(x^5)
|
inverse\:f(x)=\arccos(x^{5})
|
inverse of \sqrt[3]{1-x^2}
|
inverse\:\sqrt[3]{1-x^{2}}
|
inverse of 2/3 sqrt(-4x-9)+9
|
inverse\:\frac{2}{3}\sqrt{-4x-9}+9
|
inverse of 2+sqrt(4-x),x<= 4
|
inverse\:2+\sqrt{4-x},x\le\:4
|
inverse of (1+sqrt(x))/(1-sqrt(x))
|
inverse\:\frac{1+\sqrt{x}}{1-\sqrt{x}}
|
asymptotes of f(x)=(5x-15)/(2x-9)
|
asymptotes\:f(x)=\frac{5x-15}{2x-9}
|
inverse of f(x)= 1/4-((x-10)/(x+6))
|
inverse\:f(x)=\frac{1}{4}-(\frac{x-10}{x+6})
|
inverse of f(x)=(x-1)^2,[1,infinity ]
|
inverse\:f(x)=(x-1)^{2},[1,\infty\:]
|
inverse of (5x-15)/(3x+7)
|
inverse\:\frac{5x-15}{3x+7}
|
inverse of \sqrt[5]{3x+1}
|
inverse\:\sqrt[5]{3x+1}
|
inverse of (2x+3)/(5x-1)
|
inverse\:\frac{2x+3}{5x-1}
|
inverse of e^{-1/2 x^2}
|
inverse\:e^{-\frac{1}{2}x^{2}}
|
inverse of f(x)=4-ln(2-5x)
|
inverse\:f(x)=4-\ln(2-5x)
|
inverse of f(x)=((2x+1))/((3x-2))
|
inverse\:f(x)=\frac{(2x+1)}{(3x-2)}
|
inverse of j^{30.4}+10
|
inverse\:j^{30.4}+10
|
inverse of f(x)=(-2x)/(3-x)
|
inverse\:f(x)=\frac{-2x}{3-x}
|
domain of f(x)=(x^2-4)/(x^4-16)
|
domain\:f(x)=\frac{x^{2}-4}{x^{4}-16}
|
inverse of f(x)=y= 1/(2x-5)
|
inverse\:f(x)=y=\frac{1}{2x-5}
|
inverse of ln(3.5808)
|
inverse\:\ln(3.5808)
|
inverse of sqrt(-x),x<0
|
inverse\:\sqrt{-x},x<0
|
inverse of 3/25
|
inverse\:\frac{3}{25}
|
inverse of y=sqrt(2-x)+4
|
inverse\:y=\sqrt{2-x}+4
|
inverse of 2x^2-3x-1
|
inverse\:2x^{2}-3x-1
|
inverse of f(x)=4x^8-30
|
inverse\:f(x)=4x^{8}-30
|
inverse of f(x)= 1/((x^2+1))
|
inverse\:f(x)=\frac{1}{(x^{2}+1)}
|