Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
midpoint (11,-2),(-9,13)
midpoint\:(11,-2),(-9,13)
range of sqrt(x-5)
range\:\sqrt{x-5}
domain of f(x)=(x-3)/(2x-5)
domain\:f(x)=\frac{x-3}{2x-5}
domain of 1/((sqrt(x-9))^2+1)
domain\:\frac{1}{(\sqrt{x-9})^{2}+1}
domain of sqrt(1-|(x+2)/(x-3)|)
domain\:\sqrt{1-\left|\frac{x+2}{x-3}\right|}
line y= 1/2 x-5
line\:y=\frac{1}{2}x-5
asymptotes of f(x)=tan(x/2)
asymptotes\:f(x)=\tan(\frac{x}{2})
domain of f(x)=4x-7
domain\:f(x)=4x-7
range of f(x)=(-4x+1)/(2x-3)
range\:f(x)=\frac{-4x+1}{2x-3}
domain of log_{5}(3^x)
domain\:\log_{5}(3^{x})
inverse of f(x)=(-x-10)/6
inverse\:f(x)=\frac{-x-10}{6}
domain of log_{5}(x^2-4)
domain\:\log_{5}(x^{2}-4)
critical y=x^{4/5}(x-3)
critical\:y=x^{\frac{4}{5}}(x-3)
range of f(x)= x/(9x-4)
range\:f(x)=\frac{x}{9x-4}
asymptotes of (2x)/(x-5)
asymptotes\:\frac{2x}{x-5}
asymptotes of f(x)=(3x^2-12)/(x^2+2x-3)
asymptotes\:f(x)=\frac{3x^{2}-12}{x^{2}+2x-3}
slope ofintercept 5x+3y=-4
slopeintercept\:5x+3y=-4
domain of 2x^3-4
domain\:2x^{3}-4
domain of 16x^5-12x^3+4x^2-3
domain\:16x^{5}-12x^{3}+4x^{2}-3
slope ofintercept y+2x=8
slopeintercept\:y+2x=8
domain of f(x)=-x^2+7x
domain\:f(x)=-x^{2}+7x
range of (x-2)/(x-3)
range\:\frac{x-2}{x-3}
inverse of f(x)= x/(8x+3)
inverse\:f(x)=\frac{x}{8x+3}
asymptotes of f(x)=(x^3+27)/(x^2+4)
asymptotes\:f(x)=\frac{x^{3}+27}{x^{2}+4}
inflection f(x)=(2x-6)/(x+6)
inflection\:f(x)=\frac{2x-6}{x+6}
range of 6+sqrt(x+36)
range\:6+\sqrt{x+36}
line (-1x)/3+2/1
line\:\frac{-1x}{3}+\frac{2}{1}
inverse of f(x)=log_{5}(6x+4)-3
inverse\:f(x)=\log_{5}(6x+4)-3
symmetry y=x^2-5x
symmetry\:y=x^{2}-5x
domain of f(x)=sqrt(-x^2+6x-8)
domain\:f(x)=\sqrt{-x^{2}+6x-8}
asymptotes of f(x)=sqrt(2-x)
asymptotes\:f(x)=\sqrt{2-x}
extreme f(x)=e^{4x}+e^{-4x}
extreme\:f(x)=e^{4x}+e^{-4x}
slope of y=4x+3
slope\:y=4x+3
extreme 2x^2
extreme\:2x^{2}
asymptotes of f(x)= 8/13 sec(-4/5 x)
asymptotes\:f(x)=\frac{8}{13}\sec(-\frac{4}{5}x)
domain of-sqrt(-x+2)
domain\:-\sqrt{-x+2}
inverse of f(x)=e^{2x}-4
inverse\:f(x)=e^{2x}-4
amplitude of y=-4sin(6x+pi/2)
amplitude\:y=-4\sin(6x+\frac{π}{2})
slope ofintercept x+5y=5
slopeintercept\:x+5y=5
intercepts of y=x^2-4x-5
intercepts\:y=x^{2}-4x-5
range of (6x-6)/(x+2)
range\:\frac{6x-6}{x+2}
intercepts of-2x^3-20x^2
intercepts\:-2x^{3}-20x^{2}
line (0,3000),(1,2700)
line\:(0,3000),(1,2700)
asymptotes of ((x^2))/(x^2+27)
asymptotes\:\frac{(x^{2})}{x^{2}+27}
inverse of y= 2/3 x+2
inverse\:y=\frac{2}{3}x+2
asymptotes of y=cot(x+pi/6)
asymptotes\:y=\cot(x+\frac{π}{6})
inverse of f(x)=100(0.95)^x
inverse\:f(x)=100(0.95)^{x}
inflection 2x^3+x^2-5x+1
inflection\:2x^{3}+x^{2}-5x+1
inverse of log_{4}(x-2)
inverse\:\log_{4}(x-2)
parity f(x)= x/(1+x^2)
parity\:f(x)=\frac{x}{1+x^{2}}
inflection f(x)=xsqrt(5-x)
inflection\:f(x)=x\sqrt{5-x}
slope of (20-40)/(32-60)
slope\:\frac{20-40}{32-60}
inverse of 2+sqrt(x+1)
inverse\:2+\sqrt{x+1}
midpoint (-5,0),(-9,-6)
midpoint\:(-5,0),(-9,-6)
inverse of f(x)= 1/4 x^2-5
inverse\:f(x)=\frac{1}{4}x^{2}-5
inverse of 8
inverse\:8
range of (x^2)/(x^2+4)
range\:\frac{x^{2}}{x^{2}+4}
inverse of f(x)=(x+17)/(x-16)
inverse\:f(x)=\frac{x+17}{x-16}
domain of h(x)=(x+1)^3+3
domain\:h(x)=(x+1)^{3}+3
range of f(x)=2|x|-3
range\:f(x)=2\left|x\right|-3
domain of 7/(x+2)
domain\:\frac{7}{x+2}
inverse of f(x)=5x
inverse\:f(x)=5x
inverse of (x^{12})/(x^{-2)}
inverse\:\frac{x^{12}}{x^{-2}}
periodicity of f(x)=sin((2pi)/(8pi)x)
periodicity\:f(x)=\sin(\frac{2π}{8π}x)
simplify (5.5)(-3.1)
simplify\:(5.5)(-3.1)
domain of cos(x)
domain\:\cos(x)
intercepts of f(x)=((4x^3-2))/((x^3+3))
intercepts\:f(x)=\frac{(4x^{3}-2)}{(x^{3}+3)}
f(x)=x^3-3x
f(x)=x^{3}-3x
range of 2^{x-4}
range\:2^{x-4}
inverse of f(x)=2x^2+7
inverse\:f(x)=2x^{2}+7
inflection y=xsqrt(16-x^2)
inflection\:y=x\sqrt{16-x^{2}}
domain of 1/((sqrt(1-x^2)))
domain\:\frac{1}{(\sqrt{1-x^{2}})}
domain of f(x)=(-2x+1)/x
domain\:f(x)=\frac{-2x+1}{x}
intercepts of f(x)=x^3+2x^2+x
intercepts\:f(x)=x^{3}+2x^{2}+x
critical f(x)=6x^4+6x^3
critical\:f(x)=6x^{4}+6x^{3}
inflection f(x)=x^3+3x^2+1
inflection\:f(x)=x^{3}+3x^{2}+1
symmetry 6x-x^2-5
symmetry\:6x-x^{2}-5
inverse of f(x)= 3/x
inverse\:f(x)=\frac{3}{x}
domain of f(x)=-x^2+2x-4
domain\:f(x)=-x^{2}+2x-4
amplitude of f(x)=3csc(x/2)
amplitude\:f(x)=3\csc(\frac{x}{2})
inverse of f(x)=(9x+3)/(x-1)
inverse\:f(x)=\frac{9x+3}{x-1}
range of-2x
range\:-2x
asymptotes of f(x)=(5x)/(x^2-9)
asymptotes\:f(x)=\frac{5x}{x^{2}-9}
inverse of (x-5)/(x+5)
inverse\:\frac{x-5}{x+5}
domain of f(x)=sqrt(x^2-5x-50)
domain\:f(x)=\sqrt{x^{2}-5x-50}
symmetry-(x+3)^2
symmetry\:-(x+3)^{2}
inverse of (8x)/(9x-1)
inverse\:\frac{8x}{9x-1}
domain of y=sqrt(4-2x)
domain\:y=\sqrt{4-2x}
domain of f(x)= x/(3+x)
domain\:f(x)=\frac{x}{3+x}
inverse of f(x)=((x-3))/(x+8)
inverse\:f(x)=\frac{(x-3)}{x+8}
slope of 3x-5y+12=0
slope\:3x-5y+12=0
amplitude of-3+2sin(x+pi/6)
amplitude\:-3+2\sin(x+\frac{π}{6})
extreme f(x)=x^4-4x^2
extreme\:f(x)=x^{4}-4x^{2}
slope of 9x+3y=-6
slope\:9x+3y=-6
parity ln(arctan(7x^4))
parity\:\ln(\arctan(7x^{4}))
domain of f(x)=sqrt(x-6)
domain\:f(x)=\sqrt{x-6}
domain of f(x)=(2x)/(x^2+1)
domain\:f(x)=\frac{2x}{x^{2}+1}
asymptotes of (sin(x))/(1+cos(x))
asymptotes\:\frac{\sin(x)}{1+\cos(x)}
extreme x^4-8x^2+16
extreme\:x^{4}-8x^{2}+16
range of f(x)=(2x-1)/(4+5x)
range\:f(x)=\frac{2x-1}{4+5x}
1
..
175
176
177
178
179
..
1324