inverse of f(x)=7ln(\sqrt[3]{5x-2})+1
|
inverse\:f(x)=7\ln(\sqrt[3]{5x-2})+1
|
inverse of f(x)=(1.5)/((1+0.15*10))
|
inverse\:f(x)=\frac{1.5}{(1+0.15\cdot\:10)}
|
inverse of f(x)=sqrt(3+8x)
|
inverse\:f(x)=\sqrt{3+8x}
|
inverse of 5/(x+4)+1
|
inverse\:\frac{5}{x+4}+1
|
inverse of y=(x-3)^2,x<= 3
|
inverse\:y=(x-3)^{2},x\le\:3
|
inverse of 3-(-1)^n
|
inverse\:3-(-1)^{n}
|
asymptotes of f(x)=4x
|
asymptotes\:f(x)=4x
|
inverse of f(x)=16x^2-56x+37
|
inverse\:f(x)=16x^{2}-56x+37
|
inverse of f(y)=(x+3)^2-2
|
inverse\:f(y)=(x+3)^{2}-2
|
inverse of log_{2}((-x-1)/(x-1))
|
inverse\:\log_{2}(\frac{-x-1}{x-1})
|
inverse of f(x)=(2x+1)/(5-3x)
|
inverse\:f(x)=\frac{2x+1}{5-3x}
|
inverse of f(x)=14x^3-5
|
inverse\:f(x)=14x^{3}-5
|
inverse of f(x)=7x+24
|
inverse\:f(x)=7x+24
|
inverse of (x^2)/(-x^2+4)
|
inverse\:\frac{x^{2}}{-x^{2}+4}
|
inverse of f(x)=1+log_{1/e}(2-x)
|
inverse\:f(x)=1+\log_{\frac{1}{e}}(2-x)
|
inverse of f(x)=x3+3x2+1
|
inverse\:f(x)=x3+3x2+1
|
inverse of f(x)=((7x+3))/((x-5))
|
inverse\:f(x)=\frac{(7x+3)}{(x-5)}
|
inverse of f(x)=2-sqrt(3+x)
|
inverse\:f(x)=2-\sqrt{3+x}
|
inverse of f(x)=d+1
|
inverse\:f(x)=d+1
|
inverse of (-3x+4)/(7x+9)
|
inverse\:\frac{-3x+4}{7x+9}
|
inverse of ln(4x+2)
|
inverse\:\ln(4x+2)
|
inverse of (((9((5x^7-7))5))/4)9
|
inverse\:(\frac{(9((5x^{7}-7))5)}{4})9
|
inverse of f(x)=-12x^2+5
|
inverse\:f(x)=-12x^{2}+5
|
inverse of tan(0.79668…)
|
inverse\:\tan(0.79668…)
|
inverse of f(x)=(2x-5)^2
|
inverse\:f(x)=(2x-5)^{2}
|
inverse of 3/(x-8)
|
inverse\:\frac{3}{x-8}
|
inverse of g(x)=(9x)/(7x-9)
|
inverse\:g(x)=\frac{9x}{7x-9}
|
inverse of x=2^y
|
inverse\:x=2^{y}
|
domain of f(x)=((x^2-2x+4))/(x-2)
|
domain\:f(x)=\frac{(x^{2}-2x+4)}{x-2}
|
inverse of f(x)=1-1/2 e^{-2bx}
|
inverse\:f(x)=1-\frac{1}{2}e^{-2bx}
|
inverse of 2x+3yx+2y=2
|
inverse\:2x+3yx+2y=2
|
inverse of f(x)=2083x
|
inverse\:f(x)=2083x
|
inverse of f(x)=-arctan(x+1)
|
inverse\:f(x)=-\arctan(x+1)
|
inverse of f(x)= 6/(2x+1)
|
inverse\:f(x)=\frac{6}{2x+1}
|
inverse of f(x)=(x-3)/5-2
|
inverse\:f(x)=\frac{x-3}{5}-2
|
inverse of d/d-5x+1
|
inverse\:\frac{d}{d}-5x+1
|
inverse of y=sqrt(x-2)+2
|
inverse\:y=\sqrt{x-2}+2
|
inverse of f(x)= x/(e^3)+e^4x+e
|
inverse\:f(x)=\frac{x}{e^{3}}+e^{4}x+e
|
inverse of f(x)=sqrt(log_{3)((x+6)/2)}+1
|
inverse\:f(x)=\sqrt{\log_{3}(\frac{x+6}{2})}+1
|
parallel y=10x+2,\at (6,5)
|
parallel\:y=10x+2,\at\:(6,5)
|
domain of (sqrt(x))/(2x-5)
|
domain\:\frac{\sqrt{x}}{2x-5}
|
inverse of f(x)=y= 1/2 (1+e^x)
|
inverse\:f(x)=y=\frac{1}{2}(1+e^{x})
|
inverse of-ln(x+2)+1
|
inverse\:-\ln(x+2)+1
|
inverse of f(x)=(4x)/3+1/2
|
inverse\:f(x)=\frac{4x}{3}+\frac{1}{2}
|
inverse of f(x)=5ln(sqrt(1+8x^3))
|
inverse\:f(x)=5\ln(\sqrt{1+8x^{3}})
|
inverse of f(x)= 5/6 x-1
|
inverse\:f(x)=\frac{5}{6}x-1
|
inverse of \sqrt[3]{-3-1}
|
inverse\:\sqrt[3]{-3-1}
|
inverse of 3-2/x
|
inverse\:3-\frac{2}{x}
|
inverse of D/(Dx)4x+10x^2
|
inverse\:\frac{D}{Dx}4x+10x^{2}
|
inverse of f(x)=2x^{5/2}+4
|
inverse\:f(x)=2x^{\frac{5}{2}}+4
|
inverse of 7-3x^2x-3
|
inverse\:7-3x^{2}x-3
|
perpendicular y=6x-1
|
perpendicular\:y=6x-1
|
inverse of f(x)=(-x-8)/8
|
inverse\:f(x)=\frac{-x-8}{8}
|
inverse of (sqrt(2))/2 (sqrt(2))/2
|
inverse\:\frac{\sqrt{2}}{2}\frac{\sqrt{2}}{2}
|
inverse of (4^x-2^{2x-1})/(4^x+1)
|
inverse\:\frac{4^{x}-2^{2x-1}}{4^{x}+1}
|
inverse of f(x)=-log_{2}(x+1)
|
inverse\:f(x)=-\log_{2}(x+1)
|
inverse of (1+sqrt(2))^n
|
inverse\:(1+\sqrt{2})^{n}
|
inverse of f(x)=x+8sqrt(x)
|
inverse\:f(x)=x+8\sqrt{x}
|
inverse of (2x+1)/(x+1)
|
inverse\:\frac{2x+1}{x+1}
|
inverse of x(-x+8)
|
inverse\:x(-x+8)
|
inverse of f(x)=2*sqrt(x)
|
inverse\:f(x)=2\cdot\:\sqrt{x}
|
inverse of f(x)=(2/x-3)/(4/(x^2)-9)
|
inverse\:f(x)=\frac{\frac{2}{x}-3}{\frac{4}{x^{2}}-9}
|
critical points of 2x^4-30x^2
|
critical\:points\:2x^{4}-30x^{2}
|
inverse of 1/4 x^3-2
|
inverse\:\frac{1}{4}x^{3}-2
|
inverse of ln(3+x)-2
|
inverse\:\ln(3+x)-2
|
inverse of f(x)=(x^2-4)^{1/2}
|
inverse\:f(x)=(x^{2}-4)^{\frac{1}{2}}
|
inverse of f(x)=(x-3)+7
|
inverse\:f(x)=(x-3)+7
|
inverse of f(x)=(x-3)+2
|
inverse\:f(x)=(x-3)+2
|
inverse of V(x)=x^3
|
inverse\:V(x)=x^{3}
|
inverse of f(x)=f(x)=6x+8(x+2)
|
inverse\:f(x)=f(x)=6x+8(x+2)
|
inverse of 1.2+log_{2}(x+10)
|
inverse\:1.2+\log_{2}(x+10)
|
inverse of f(x)=\sqrt[4]{4-4x}
|
inverse\:f(x)=\sqrt[4]{4-4x}
|
inverse of f(x)=3.4-0.4x+0.06x^2
|
inverse\:f(x)=3.4-0.4x+0.06x^{2}
|
slope of 8x-4y=16
|
slope\:8x-4y=16
|
inverse of f(x)=15+3r
|
inverse\:f(x)=15+3r
|
inverse of f(x)=(-2)/(2x+5)
|
inverse\:f(x)=\frac{-2}{2x+5}
|
inverse of f(x)=6+sqrt(4x-4)
|
inverse\:f(x)=6+\sqrt{4x-4}
|
inverse of y=f(x)= x/2+1
|
inverse\:y=f(x)=\frac{x}{2}+1
|
inverse of 1/4 ln((x-2)/(x+1))
|
inverse\:\frac{1}{4}\ln(\frac{x-2}{x+1})
|
inverse of f(x)=e^{3x+4}
|
inverse\:f(x)=e^{3x+4}
|
inverse of f(x)=x^2-12x+36,x>= 6
|
inverse\:f(x)=x^{2}-12x+36,x\ge\:6
|
inverse of f(x)=-x3+6x2-9x
|
inverse\:f(x)=-x3+6x2-9x
|
inverse of (3x-2)/(x+1)
|
inverse\:\frac{3x-2}{x+1}
|
midpoint (1,-6,)(3,-2,)
|
midpoint\:(1,-6,)(3,-2,)
|
inverse of f(x)=(7x-6)/(4x+3)
|
inverse\:f(x)=\frac{7x-6}{4x+3}
|
inverse of f(x)=4r+16
|
inverse\:f(x)=4r+16
|
inverse of 2+1/(sqrt(x-5))
|
inverse\:2+\frac{1}{\sqrt{x-5}}
|
inverse of f(x)=2csc(((x+pi))/2)-2
|
inverse\:f(x)=2\csc(\frac{(x+π)}{2})-2
|
inverse of f(x)=4-5x^2
|
inverse\:f(x)=4-5x^{2}
|
inverse of f(x)=y=3x^2+6x+15
|
inverse\:f(x)=y=3x^{2}+6x+15
|
inverse of (1+2*z^{-2})/(1+1/(2*z^{-2))}
|
inverse\:\frac{1+2\cdot\:z^{-2}}{1+\frac{1}{2\cdot\:z^{-2}}}
|
inverse of (x-4)/(2x+1)
|
inverse\:\frac{x-4}{2x+1}
|
inverse of f(x)=-0.7x+35
|
inverse\:f(x)=-0.7x+35
|
inverse of f(x)=\sqrt[3]{2x-2}
|
inverse\:f(x)=\sqrt[3]{2x-2}
|
inverse of f(x)=8+sqrt(3)x-9
|
inverse\:f(x)=8+\sqrt{3}x-9
|
inverse of 3/(8x^{5/2)}
|
inverse\:\frac{3}{8x^{\frac{5}{2}}}
|
inverse of sqrt(x^2+9x-20)
|
inverse\:\sqrt{x^{2}+9x-20}
|
inverse of f(x)= 2/(e-pi)(x-pi)-1
|
inverse\:f(x)=\frac{2}{e-π}(x-π)-1
|
inverse of s/(s^2-6s-7)
|
inverse\:\frac{s}{s^{2}-6s-7}
|
inverse of-4x^2+32x-60
|
inverse\:-4x^{2}+32x-60
|