Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
inverse of f(x)=((x-3)/2)^2
inverse\:f(x)=(\frac{x-3}{2})^{2}
inverse of x/5
inverse\:\frac{x}{5}
inverse of 2e^{-3x}+4
inverse\:2e^{-3x}+4
inverse of f(x)= 1/(2pi)e^{-(1x^2)/2}
inverse\:f(x)=\frac{1}{2π}e^{-\frac{1x^{2}}{2}}
inverse of f(x)=(1-3x)/(x+2)
inverse\:f(x)=\frac{1-3x}{x+2}
inverse of f(x)=sqrt(9000)*sqrt(x)
inverse\:f(x)=\sqrt{9000}\cdot\:\sqrt{x}
inverse of y=sqrt(49-4x^2)
inverse\:y=\sqrt{49-4x^{2}}
inverse of 121
inverse\:121
inverse of y=2sqrt(x-3)
inverse\:y=2\sqrt{x-3}
inverse of f(x)=9x^2+4
inverse\:f(x)=9x^{2}+4
inverse of f(x)=y=3x^2+12x-7
inverse\:f(x)=y=3x^{2}+12x-7
range of x^2+4x-12
range\:x^{2}+4x-12
inverse of f(x)=ln(1-x)
inverse\:f(x)=\ln(1-x)
inverse of 1.2
inverse\:1.2
inverse of f(x)=2^{10x}
inverse\:f(x)=2^{10x}
inverse of f(x)=sqrt(x+5)-4
inverse\:f(x)=\sqrt{x+5}-4
inverse of f(x)=(e^x)/(1-e^x)
inverse\:f(x)=\frac{e^{x}}{1-e^{x}}
inverse of f(x)=2-sqrt(3)
inverse\:f(x)=2-\sqrt{3}
inverse of f(x)=2^3-1
inverse\:f(x)=2^{3}-1
inverse of x^4-8x^2+17
inverse\:x^{4}-8x^{2}+17
inverse of f(x)=2(x+6)^2-75
inverse\:f(x)=2(x+6)^{2}-75
inverse of f(2)=3x-7
inverse\:f(2)=3x-7
domain of f(x)= 1/(1-ln(x))
domain\:f(x)=\frac{1}{1-\ln(x)}
inverse of f(x)=100e^{0.013t}
inverse\:f(x)=100e^{0.013t}
inverse of f(x)=-2sqrt(x+1)-4
inverse\:f(x)=-2\sqrt{x+1}-4
inverse of sin(0.5)
inverse\:\sin(0.5)
inverse of f(x)=-10x-9
inverse\:f(x)=-10x-9
inverse of f(x)=sqrt(5)
inverse\:f(x)=\sqrt{5}
inverse of (x+7)/(x-3)
inverse\:\frac{x+7}{x-3}
inverse of f(x)=sqrt(1-log_{2)(x-1)}
inverse\:f(x)=\sqrt{1-\log_{2}(x-1)}
inverse of (x-3)^2+7
inverse\:(x-3)^{2}+7
inverse of-2cos(x)
inverse\:-2\cos(x)
inverse of-log_{10}(t)
inverse\:-\log_{10}(t)
asymptotes of f(x)=(e^{2x})/x
asymptotes\:f(x)=\frac{e^{2x}}{x}
inverse of f(x)=sqrt(x+7),x>=-7
inverse\:f(x)=\sqrt{x+7},x\ge\:-7
inverse of f(x)=-5t^2+10t+20,t>0
inverse\:f(x)=-5t^{2}+10t+20,t>0
inverse of f(x)=1x+3
inverse\:f(x)=1x+3
inverse of f(x)=y=5x+2
inverse\:f(x)=y=5x+2
inverse of (\sqrt[3]{x^2})/2+1
inverse\:\frac{\sqrt[3]{x^{2}}}{2}+1
inverse of f(x)=12+sqrt(6x-6)
inverse\:f(x)=12+\sqrt{6x-6}
inverse of f(x)=\sqrt[3]{8x+2}
inverse\:f(x)=\sqrt[3]{8x+2}
inverse of (x^4)/4
inverse\:\frac{x^{4}}{4}
inverse of f(t)=28.4e^{0.01t}
inverse\:f(t)=28.4e^{0.01t}
inverse of 5/(x+8)
inverse\:\frac{5}{x+8}
inflection points of f(x)=4x^3-48x-6
inflection\:points\:f(x)=4x^{3}-48x-6
inverse of f(x)=14+sqrt(4x-4)
inverse\:f(x)=14+\sqrt{4x-4}
inverse of (3-2x)/(3x-2)
inverse\:\frac{3-2x}{3x-2}
inverse of f(x)= 6/x-5
inverse\:f(x)=\frac{6}{x}-5
inverse of x^2-4x-3
inverse\:x^{2}-4x-3
inverse of (2x-3)/(-x+4)
inverse\:\frac{2x-3}{-x+4}
inverse of 2x^2-4x+5
inverse\:2x^{2}-4x+5
inverse of f(x)=-3(y-1)^2+2
inverse\:f(x)=-3(y-1)^{2}+2
inverse of sqrt(x+2)-7
inverse\:\sqrt{x+2}-7
inverse of cos(-537865)
inverse\:\cos(-537865^{\circ\:})
inverse of f(x)=2(x-2)2=8(7+y)
inverse\:f(x)=2(x-2)2=8(7+y)
domain of f(x)=log_{2}(4x+4)
domain\:f(x)=\log_{2}(4x+4)
inverse of f(x)=(6x+5)/(5x-3)
inverse\:f(x)=\frac{6x+5}{5x-3}
inverse of f(x)=((10+4x))/(5x+6)
inverse\:f(x)=\frac{(10+4x)}{5x+6}
inverse of f(x)= 2/3 (4x-5)
inverse\:f(x)=\frac{2}{3}(4x-5)
inverse of (7x(3x^2-12x+5))/(3x^2)
inverse\:\frac{7x(3x^{2}-12x+5)}{3x^{2}}
inverse of y=6x-11
inverse\:y=6x-11
inverse of f(x)=5-3x^2x-3
inverse\:f(x)=5-3x^{2}x-3
inverse of f(x)(x)^{-1}=(3x-4)/(2-x)
inverse\:f(x)(x)^{-1}=\frac{3x-4}{2-x}
inverse of f(x)=1-x^2,x>= 0
inverse\:f(x)=1-x^{2},x\ge\:0
inverse of f(x)=13+sqrt(5x-5)
inverse\:f(x)=13+\sqrt{5x-5}
inverse of f(x)=x^2+4x-4
inverse\:f(x)=x^{2}+4x-4
inverse of f(t)=4+7t
inverse\:f(t)=4+7t
domain of f(x)= 2/x+4/(x+4)
domain\:f(x)=\frac{2}{x}+\frac{4}{x+4}
inverse of f(x)=3-2^{2-x}
inverse\:f(x)=3-2^{2-x}
inverse of f(x)=sqrt(1+x^2)
inverse\:f(x)=\sqrt{1+x^{2}}
inverse of f(x)=(5x)/(x-4)
inverse\:f(x)=\frac{5x}{x-4}
inverse of f(x)=(2-x^2)/7
inverse\:f(x)=\frac{2-x^{2}}{7}
inverse of f(x)= 1/(x^2-9)
inverse\:f(x)=\frac{1}{x^{2}-9}
inverse of f(x)=2(x-3)^2-8
inverse\:f(x)=2(x-3)^{2}-8
inverse of f(x)=(e^{-x})/((1+e^{-x))^2}
inverse\:f(x)=\frac{e^{-x}}{(1+e^{-x})^{2}}
inverse of+log_{8}(x)
inverse\:+\log_{8}(x)
inverse of f(x)= 1/(2(x-4)^2+1)
inverse\:f(x)=\frac{1}{2(x-4)^{2}+1}
inverse of (x-1)^3+5
inverse\:(x-1)^{3}+5
slope of 7y=13
slope\:7y=13
inverse of f(x)=300-50x
inverse\:f(x)=300-50x
inverse of (x-2)/(2x-3)
inverse\:\frac{x-2}{2x-3}
inverse of f(x)=arctan(\sqrt[3]{x^3-9})
inverse\:f(x)=\arctan(\sqrt[3]{x^{3}-9})
inverse of f(x)=(5x+1)/(2x-3)
inverse\:f(x)=\frac{5x+1}{2x-3}
inverse of sqrt(-(x-2)/3)+1
inverse\:\sqrt{-\frac{x-2}{3}}+1
inverse of f(x)=(5x+3)/(2x+2)
inverse\:f(x)=\frac{5x+3}{2x+2}
inverse of f(x)= 1/(3x)-7
inverse\:f(x)=\frac{1}{3x}-7
inverse of f(x)=3-sqrt(x+2)
inverse\:f(x)=3-\sqrt{x+2}
inverse of f(x)=(2x^3-1)/5
inverse\:f(x)=\frac{2x^{3}-1}{5}
inverse of f(x)=sqrt(2-x)+1
inverse\:f(x)=\sqrt{2-x}+1
slope intercept of 2y-12x=-14
slope\:intercept\:2y-12x=-14
inverse of f(x)=\sqrt[7]{x+3}
inverse\:f(x)=\sqrt[7]{x+3}
inverse of f(x)= 1/(1+10^x)
inverse\:f(x)=\frac{1}{1+10^{x}}
inverse of f(x)=tan(x^2)
inverse\:f(x)=\tan(x^{2})
inverse of f(x)=log_{10}(x^2+1)
inverse\:f(x)=\log_{10}(x^{2}+1)
inverse of f(x)=(3x)/(x-9)
inverse\:f(x)=\frac{3x}{x-9}
inverse of h(x)= 9/(x+11)
inverse\:h(x)=\frac{9}{x+11}
inverse of f(x)=2(x-5)^2-6
inverse\:f(x)=2(x-5)^{2}-6
inverse of f(x)=15+3sqrt(x)
inverse\:f(x)=15+3\sqrt{x}
inverse of f(x)=sqrt(x^2-1),x>= 1
inverse\:f(x)=\sqrt{x^{2}-1},x\ge\:1
domain of f(x)=1-3x
domain\:f(x)=1-3x
1
..
130
131
132
133
134
135
136
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback