inverse of y= 1/(x-3)
|
inverse\:y=\frac{1}{x-3}
|
inverse of f(x)=0.5(1-e^{2x})
|
inverse\:f(x)=0.5(1-e^{2x})
|
inverse of f(x)=log_{2}(x+7)
|
inverse\:f(x)=\log_{2}(x+7)
|
inverse of y=2sqrt((3x+1))+4
|
inverse\:y=2\sqrt{(3x+1)}+4
|
inverse of f(x)=ln(x^{59})
|
inverse\:f(x)=\ln(x^{59})
|
inverse of f(x)= 2/(log_{3)(x)}
|
inverse\:f(x)=\frac{2}{\log_{3}(x)}
|
inverse of f(x)=y=5x-6
|
inverse\:f(x)=y=5x-6
|
inverse of (x^2+1)/x
|
inverse\:\frac{x^{2}+1}{x}
|
inverse of f(x)= 1/(x^2-x)
|
inverse\:f(x)=\frac{1}{x^{2}-x}
|
inverse of f(x)=(3x)/(x-3)
|
inverse\:f(x)=\frac{3x}{x-3}
|
inverse of f(x)=sqrt(4x+3)
|
inverse\:f(x)=\sqrt{4x+3}
|
inverse of f(x)=-4sqrt(x-8)+10
|
inverse\:f(x)=-4\sqrt{x-8}+10
|
inverse of f(x)=100*x
|
inverse\:f(x)=100\cdot\:x
|
inverse of (x-2)/(2x+5)
|
inverse\:\frac{x-2}{2x+5}
|
inverse of (sqrt(x))/(sqrt(x)-3)
|
inverse\:\frac{\sqrt{x}}{\sqrt{x}-3}
|
inverse of f(x)=4x^2+1,x>= 0
|
inverse\:f(x)=4x^{2}+1,x\ge\:0
|
inverse of-sqrt(x^2-4x+4)
|
inverse\:-\sqrt{x^{2}-4x+4}
|
inverse of f(x)=10x^3+3
|
inverse\:f(x)=10x^{3}+3
|
inverse of (2x)/(sqrt(x)-1)
|
inverse\:\frac{2x}{\sqrt{x}-1}
|
inverse of f(x)=sqrt(6.5-12x)
|
inverse\:f(x)=\sqrt{6.5-12x}
|
inverse of f(x)=(x^2+1)/(x^2+2)
|
inverse\:f(x)=\frac{x^{2}+1}{x^{2}+2}
|
domain of f(x)=((x+3))/(x^2-9)
|
domain\:f(x)=\frac{(x+3)}{x^{2}-9}
|
inverse of \sqrt[4]{2x+5}
|
inverse\:\sqrt[4]{2x+5}
|
inverse of f(x)=2^{-(1-x^2)/(x^2)}+1
|
inverse\:f(x)=2^{-\frac{1-x^{2}}{x^{2}}}+1
|
inverse of g(x)=x+1
|
inverse\:g(x)=x+1
|
inverse of y=ln(x+sqrt(x^2+1))
|
inverse\:y=\ln(x+\sqrt{x^{2}+1})
|
inverse of 5^{2x+7}
|
inverse\:5^{2x+7}
|
inverse of g(x)=x-3
|
inverse\:g(x)=x-3
|
inverse of f(x)=log_{2}(5x)
|
inverse\:f(x)=\log_{2}(5x)
|
inverse of f(x)=5x^2-x^4
|
inverse\:f(x)=5x^{2}-x^{4}
|
inverse of f(x)= 5/(2-x),x\ne 2
|
inverse\:f(x)=\frac{5}{2-x},x\ne\:2
|
inverse of h(x)=sqrt(x-3)+5
|
inverse\:h(x)=\sqrt{x-3}+5
|
slope of y-4=3(x-1)
|
slope\:y-4=3(x-1)
|
inverse of f(x)=3^{x+6}
|
inverse\:f(x)=3^{x+6}
|
inverse of x^2+10x+28
|
inverse\:x^{2}+10x+28
|
inverse of f(x)=2sin(3x-pi/2)
|
inverse\:f(x)=2\sin(3x-\frac{π}{2})
|
inverse of f(x)= 4/3 x+5
|
inverse\:f(x)=\frac{4}{3}x+5
|
inverse of e^{x/4}+5
|
inverse\:e^{\frac{x}{4}}+5
|
inverse of f(x)=(20)/x+7
|
inverse\:f(x)=\frac{20}{x}+7
|
inverse of f(x)=(x+10)/3
|
inverse\:f(x)=\frac{x+10}{3}
|
inverse of y=ln(5x+10)
|
inverse\:y=\ln(5x+10)
|
inverse of sqrt(x+4)-4
|
inverse\:\sqrt{x+4}-4
|
inverse of f(x)=-0.5x^2+1.5x
|
inverse\:f(x)=-0.5x^{2}+1.5x
|
domain of x(3x-1)(x+9)
|
domain\:x(3x-1)(x+9)
|
inverse of 100(4-sqrt(4y))
|
inverse\:100(4-\sqrt{4y})
|
inverse of f(x)=sqrt(x+4),x>= 0
|
inverse\:f(x)=\sqrt{x+4},x\ge\:0
|
inverse of f(x)=1+e^x
|
inverse\:f(x)=1+e^{x}
|
inverse of 6sqrt(x+2)
|
inverse\:6\sqrt{x+2}
|
inverse of sqrt(-x-2)
|
inverse\:\sqrt{-x-2}
|
inverse of x^2+2x-7
|
inverse\:x^{2}+2x-7
|
inverse of f(x)=8-6x^3
|
inverse\:f(x)=8-6x^{3}
|
inverse of f(x)=sqrt(x^2-4),x>= 2
|
inverse\:f(x)=\sqrt{x^{2}-4},x\ge\:2
|
inverse of f(x)=(1-e^{-x})/(1+e^x)
|
inverse\:f(x)=\frac{1-e^{-x}}{1+e^{x}}
|
inverse of f(x)=5\sqrt[5]{x}+5
|
inverse\:f(x)=5\sqrt[5]{x}+5
|
extreme points of f(x)=3x-2
|
extreme\:points\:f(x)=3x-2
|
inverse of sqrt(3-x)+8
|
inverse\:\sqrt{3-x}+8
|
inverse of f(x)=600e^x+2022
|
inverse\:f(x)=600e^{x}+2022
|
inverse of sin((25)/(12.21))
|
inverse\:\sin(\frac{25}{12.21})
|
inverse of f(x)=(x+x^3)/(x^2)
|
inverse\:f(x)=\frac{x+x^{3}}{x^{2}}
|
inverse of f(x)=5^{x+1}-3
|
inverse\:f(x)=5^{x+1}-3
|
inverse of 1/(x+12)
|
inverse\:\frac{1}{x+12}
|
inverse of f(x)=10(5)^x
|
inverse\:f(x)=10(5)^{x}
|
inverse of f(x)=x^2+6x-3
|
inverse\:f(x)=x^{2}+6x-3
|
inverse of tan(40/60)
|
inverse\:\tan(\frac{40}{60})
|
inverse of f(x)=1-2^x
|
inverse\:f(x)=1-2^{x}
|
inverse of f(x)=(1-x^2)^{1/3}
|
inverse\:f(x)=(1-x^{2})^{\frac{1}{3}}
|
inverse of 0.4x+6.6
|
inverse\:0.4x+6.6
|
inverse of f(x)=arctan(x^2-pi/4)
|
inverse\:f(x)=\arctan(x^{2}-\frac{π}{4})
|
inverse of f(x)= 3/(-3x+2)
|
inverse\:f(x)=\frac{3}{-3x+2}
|
inverse of f(x)=sqrt(x^2)-4
|
inverse\:f(x)=\sqrt{x^{2}}-4
|
inverse of f(x)=((x+2))/(-2x+1)
|
inverse\:f(x)=\frac{(x+2)}{-2x+1}
|
inverse of f(x)= 2/5 x+6
|
inverse\:f(x)=\frac{2}{5}x+6
|
inverse of f(x)= 8/(1+x^2)
|
inverse\:f(x)=\frac{8}{1+x^{2}}
|
inverse of (e^x)/(9+4e^x)
|
inverse\:\frac{e^{x}}{9+4e^{x}}
|
domain of 3x-1
|
domain\:3x-1
|
line (1,2),(3,4)
|
line\:(1,2),(3,4)
|
inverse of f(x)=sqrt(25-x^2)
|
inverse\:f(x)=\sqrt{25-x^{2}}
|
inverse of f(x)=-4sqrt(x-9)
|
inverse\:f(x)=-4\sqrt{x-9}
|
inverse of f(x)=\sqrt[3]{(x^2+1)}-5
|
inverse\:f(x)=\sqrt[3]{(x^{2}+1)}-5
|
inverse of 20
|
inverse\:20
|
inverse of 2x^3-10
|
inverse\:2x^{3}-10
|
inverse of f(x)=(x-3)/(5x-1)
|
inverse\:f(x)=\frac{x-3}{5x-1}
|
inverse of sqrt(2pis-1)
|
inverse\:\sqrt{2πs-1}
|
inverse of a*b=a+b+2
|
inverse\:a\cdot\:b=a+b+2
|
inverse of f(x)=4x^2-15
|
inverse\:f(x)=4x^{2}-15
|
inverse of f(x)=(2x)/(sqrt(x)-1)
|
inverse\:f(x)=\frac{2x}{\sqrt{x}-1}
|
inverse of f(x)=8sqrt(x)if(x)x>4
|
inverse\:f(x)=8\sqrt{x}if(x)x>4
|
domain of f(x)=sqrt(2/(x-10))
|
domain\:f(x)=\sqrt{\frac{2}{x-10}}
|
inverse of 4+log_{3}(x)
|
inverse\:4+\log_{3}(x)
|
inverse of f(x)=9+log_{6}(x-3)
|
inverse\:f(x)=9+\log_{6}(x-3)
|
inverse of f(t)=57e^{0.5t}
|
inverse\:f(t)=57e^{0.5t}
|
inverse of f(x)=1-6x
|
inverse\:f(x)=1-6x
|
inverse of f(x)=1-7x
|
inverse\:f(x)=1-7x
|
inverse of 7-3x^3
|
inverse\:7-3x^{3}
|
inverse of f(x)=x^2+2x+6,(-4,-1)
|
inverse\:f(x)=x^{2}+2x+6,(-4,-1)
|
inverse of-x^2+9
|
inverse\:-x^{2}+9
|
inverse of-x^2-8
|
inverse\:-x^{2}-8
|
inverse of f(x)= 1/(2-x)
|
inverse\:f(x)=\frac{1}{2-x}
|
domain of-sqrt(49-x^2)
|
domain\:-\sqrt{49-x^{2}}
|
inverse of (5x-6)/(2x-1)
|
inverse\:\frac{5x-6}{2x-1}
|