f(x)=(2x)/(x^2-2x-3)
|
f(x)=\frac{2x}{x^{2}-2x-3}
|
f(x)=e^{sqrt(x^2-2x)}
|
f(x)=e^{\sqrt{x^{2}-2x}}
|
f(k)=3k^2
|
f(k)=3k^{2}
|
domain of (4x-8)/((x-4)(x+1))
|
domain\:\frac{4x-8}{(x-4)(x+1)}
|
f(x)=(2x)/(x^2-2x-8)
|
f(x)=\frac{2x}{x^{2}-2x-8}
|
g(x)= 1/x-4
|
g(x)=\frac{1}{x}-4
|
f(x)=1.8x+82.8
|
f(x)=1.8x+82.8
|
f(x)=(1-x^2)/(x-2)
|
f(x)=\frac{1-x^{2}}{x-2}
|
f(x)= 1/x+2/(x^3)
|
f(x)=\frac{1}{x}+\frac{2}{x^{3}}
|
f(x)=-16x^2+24x+16
|
f(x)=-16x^{2}+24x+16
|
f(x)=(10)/(2x-3)
|
f(x)=\frac{10}{2x-3}
|
f(x)=sin((x+pi)/2)
|
f(x)=\sin(\frac{x+π}{2})
|
y=c*e^{-2x}+3x-4
|
y=c\cdot\:e^{-2x}+3x-4
|
f(y)=|y-1|
|
f(y)=\left|y-1\right|
|
domain of f(x)=5x-12
|
domain\:f(x)=5x-12
|
y=-2(x-1)^2-3
|
y=-2(x-1)^{2}-3
|
y=-2(x-1)^2-1
|
y=-2(x-1)^{2}-1
|
y=-2(x-1)^2+2
|
y=-2(x-1)^{2}+2
|
f(x)=-|x|+1
|
f(x)=-\left|x\right|+1
|
f(x)=x^2-14x
|
f(x)=x^{2}-14x
|
f(x)=x^2-11x
|
f(x)=x^{2}-11x
|
f(x)=sin(sqrt(x))ln(x/(x^2+1))
|
f(x)=\sin(\sqrt{x})\ln(\frac{x}{x^{2}+1})
|
g(x)=(sqrt(-x+3)-4)/(sqrt(x-2))
|
g(x)=\frac{\sqrt{-x+3}-4}{\sqrt{x-2}}
|
r(x)=(2x+3)/(x^2-9)
|
r(x)=\frac{2x+3}{x^{2}-9}
|
f(x)=(x+6)^{1/3}
|
f(x)=(x+6)^{\frac{1}{3}}
|
domain of (2x(x-1)^2)/((x+1)^3)
|
domain\:\frac{2x(x-1)^{2}}{(x+1)^{3}}
|
f(x)=6x^3-19x^2+11x+6
|
f(x)=6x^{3}-19x^{2}+11x+6
|
y=2sin^2(x)+cos^2(x)
|
y=2\sin^{2}(x)+\cos^{2}(x)
|
f(x)=(sqrt(x))/(1+\sqrt[3]{x)}
|
f(x)=\frac{\sqrt{x}}{1+\sqrt[3]{x}}
|
h(x)=sqrt(4-x)+sqrt(x^2-1)
|
h(x)=\sqrt{4-x}+\sqrt{x^{2}-1}
|
f(x)=3cos^2(x)+sin^2(x)
|
f(x)=3\cos^{2}(x)+\sin^{2}(x)
|
f(x)=4x^2-x-10
|
f(x)=4x^{2}-x-10
|
y=16(2)^x-6
|
y=16(2)^{x}-6
|
f(x)=(x+1)/(x^2+x)
|
f(x)=\frac{x+1}{x^{2}+x}
|
f(x)=4-(1/2)^{x+2}
|
f(x)=4-(\frac{1}{2})^{x+2}
|
f(x)=sqrt(sin(x)+1)
|
f(x)=\sqrt{\sin(x)+1}
|
inverse of f(x)=((x+8))/((x-4))
|
inverse\:f(x)=\frac{(x+8)}{(x-4)}
|
f(x)=(x+6)^{1/2}
|
f(x)=(x+6)^{\frac{1}{2}}
|
f(x)=(x-2)/(sqrt(x+1))
|
f(x)=\frac{x-2}{\sqrt{x+1}}
|
f(x)=sqrt(3)x^2+11x+6sqrt(3)
|
f(x)=\sqrt{3}x^{2}+11x+6\sqrt{3}
|
f(x)=cos(0.5x)
|
f(x)=\cos(0.5x)
|
y=((x^3+1)^2)/((x^3-1)^3)
|
y=\frac{(x^{3}+1)^{2}}{(x^{3}-1)^{3}}
|
V(t)=t^2e^{-t}
|
V(t)=t^{2}e^{-t}
|
f(x)=log_{x}(7)
|
f(x)=\log_{x}(7)
|
f(y)=e^y-e^{-y}
|
f(y)=e^{y}-e^{-y}
|
f(n)=cos(4npi)
|
f(n)=\cos(4nπ)
|
y= 9/14 x^{1/3}(x^2-7)
|
y=\frac{9}{14}x^{\frac{1}{3}}(x^{2}-7)
|
monotone intervals f(x)= 1/(x-2)
|
monotone\:intervals\:f(x)=\frac{1}{x-2}
|
y=3x^2+3x^3+6x-6
|
y=3x^{2}+3x^{3}+6x-6
|
f(x)=((x+1)(x^2+3x-10))/(x^2+6x+5)
|
f(x)=\frac{(x+1)(x^{2}+3x-10)}{x^{2}+6x+5}
|
y=(3(x^2-2)^{1/2})/(1-x)
|
y=\frac{3(x^{2}-2)^{\frac{1}{2}}}{1-x}
|
f(x)=sin^4(x)-cos^4(x)-sin^2(x)
|
f(x)=\sin^{4}(x)-\cos^{4}(x)-\sin^{2}(x)
|
f(w)= 7/(w^2-2w-3)
|
f(w)=\frac{7}{w^{2}-2w-3}
|
f(x)= 1/3 e^x
|
f(x)=\frac{1}{3}e^{x}
|
f(x)= 8/(sqrt(x+7))
|
f(x)=\frac{8}{\sqrt{x+7}}
|
y=-3cos(3x)
|
y=-3\cos(3x)
|
f(x)=(-1-3x^2)/(2x)
|
f(x)=\frac{-1-3x^{2}}{2x}
|
f(x)=10x+700
|
f(x)=10x+700
|
range of f(x)= 1/(sqrt(x-1))
|
range\:f(x)=\frac{1}{\sqrt{x-1}}
|
f(x)=e^{x+7}
|
f(x)=e^{x+7}
|
f(x)=6x^2+5x+3
|
f(x)=6x^{2}+5x+3
|
f(t)=7cos(t)tan(t)
|
f(t)=7\cos(t)\tan(t)
|
f(x)=e^{x-3}+cos(x+1)-x^2
|
f(x)=e^{x-3}+\cos(x+1)-x^{2}
|
f(t)=3e^{-t}+sin(6t)
|
f(t)=3e^{-t}+\sin(6t)
|
f(x)=log_{10}(2x^2+3x+14)
|
f(x)=\log_{10}(2x^{2}+3x+14)
|
y= x/(x^2+36)
|
y=\frac{x}{x^{2}+36}
|
f(z)=\sqrt[4]{z}
|
f(z)=\sqrt[4]{z}
|
f(x)=-\sqrt[3]{4x+1}-2
|
f(x)=-\sqrt[3]{4x+1}-2
|
y=-4(x+6)^2+36
|
y=-4(x+6)^{2}+36
|
intercepts of (5x-15)/(2x-9)
|
intercepts\:\frac{5x-15}{2x-9}
|
y= 7/(x^3)
|
y=\frac{7}{x^{3}}
|
f(x)=x^2+2x+101
|
f(x)=x^{2}+2x+101
|
f(3)=2x^3-10x-8
|
f(3)=2x^{3}-10x-8
|
f(x)=(12.85)/(1+4.21e^{-0.026x)}
|
f(x)=\frac{12.85}{1+4.21e^{-0.026x}}
|
f(x)=-|x-2|+1
|
f(x)=-\left|x-2\right|+1
|
20,30,40,50,60,70,80,90,c=10
|
20,30,40,50,60,70,80,90,c=10
|
f(x)=(sqrt(7x+2))/(3x-1)
|
f(x)=\frac{\sqrt{7x+2}}{3x-1}
|
y=2x-9,5<x<8
|
y=2x-9,5<x<8
|
f(x)=e^{2x}*x
|
f(x)=e^{2x}\cdot\:x
|
g(x)=x^2+4x-5
|
g(x)=x^{2}+4x-5
|
f(x)=-sqrt(x)
|
f(x)=-\sqrt{x}
|
extreme points of f(x)=-4x^3-11
|
extreme\:points\:f(x)=-4x^{3}-11
|
x/(1-x)
|
\frac{x}{1-x}
|
f(x)=(x+1),5<= x<= 10
|
f(x)=(x+1),5\le\:x\le\:10
|
f(x)=(x^2+x+2)/(x+1)
|
f(x)=\frac{x^{2}+x+2}{x+1}
|
f(x)= 1/(2^x+3)
|
f(x)=\frac{1}{2^{x}+3}
|
f(x)=(sech(x))/(cosh(x))
|
f(x)=\frac{\sech(x)}{\cosh(x)}
|
f(x)= 1/2 x^4-4x^2+5
|
f(x)=\frac{1}{2}x^{4}-4x^{2}+5
|
f(x)=\sqrt[30]{16-x^8}
|
f(x)=\sqrt[30]{16-x^{8}}
|
y=x^3+x^2-2x-2
|
y=x^{3}+x^{2}-2x-2
|
f(x)=5x(2x-5)^2
|
f(x)=5x(2x-5)^{2}
|
y=2sin(x)+cos(2x)
|
y=2\sin(x)+\cos(2x)
|
inflection points of f(x)=x^4-6x^2+4
|
inflection\:points\:f(x)=x^{4}-6x^{2}+4
|
f(P_{4})=P_{4}
|
f(P_{4})=P_{4}
|
h(x)=5.7-19x
|
h(x)=5.7-19x
|
f(x)=(1+sin(2x))/2
|
f(x)=\frac{1+\sin(2x)}{2}
|
y=-7x^2-4x
|
y=-7x^{2}-4x
|
f(A)= A/(2+sqrt(2)-\sqrt[4]{2)}
|
f(A)=\frac{A}{2+\sqrt{2}-\sqrt[4]{2}}
|
y=7ln(\sqrt[4]{x})
|
y=7\ln(\sqrt[4]{x})
|
f(x)=x,0<= x<= 1
|
f(x)=x,0\le\:x\le\:1
|