y=2(x-9)^2-4
|
y=2(x-9)^{2}-4
|
f(n)=12n+1
|
f(n)=12n+1
|
f(x)=sqrt(csc(x))
|
f(x)=\sqrt{\csc(x)}
|
perpendicular y=9x-3,\at (-3,-6)
|
perpendicular\:y=9x-3,\at\:(-3,-6)
|
f(x)=x^3+5x^2+5x-3
|
f(x)=x^{3}+5x^{2}+5x-3
|
f(x)=sqrt((x-3)/(2x-1))
|
f(x)=\sqrt{\frac{x-3}{2x-1}}
|
f(x)=pi*x^2
|
f(x)=π\cdot\:x^{2}
|
f(x)=sin(ln(2x))
|
f(x)=\sin(\ln(2x))
|
x=3,g(x)={3x:x>1,-2x:x<= 1}
|
x=3,g(x)=\left\{3x:x>1,-2x:x\le\:1\right\}
|
y=-x^2+60x
|
y=-x^{2}+60x
|
f(x)=(1/2)^{x+4}-3
|
f(x)=(\frac{1}{2})^{x+4}-3
|
f(x)=x^2-16x+3
|
f(x)=x^{2}-16x+3
|
y=-3*2^{x-4}
|
y=-3\cdot\:2^{x-4}
|
midpoint (3,3)(1,19)
|
midpoint\:(3,3)(1,19)
|
f(x)=(-x)^2
|
f(x)=(-x)^{2}
|
E(x)=((x-1)^3}{x^2}-\frac{(x-1)^3)/x
|
E(x)=\frac{(x-1)^{3}}{x^{2}}-\frac{(x-1)^{3}}{x}
|
f(x)=log_{10}(sin(x-3))
|
f(x)=\log_{10}(\sin(x-3))
|
f(ρ)=ρ
|
f(ρ)=ρ
|
f(x)=e^{2x}-2e^x+1
|
f(x)=e^{2x}-2e^{x}+1
|
v(x)=210x^2-4400x+125000
|
v(x)=210x^{2}-4400x+125000
|
f(x)=x^5+2x^3+x^2+x+1
|
f(x)=x^{5}+2x^{3}+x^{2}+x+1
|
f(x)=(3x+4)/x
|
f(x)=\frac{3x+4}{x}
|
f(x)=-sin(x)+1
|
f(x)=-\sin(x)+1
|
h(t)=(t+1)^{2/3}(2t^2-1)^3
|
h(t)=(t+1)^{\frac{2}{3}}(2t^{2}-1)^{3}
|
f(x)=(3x^3-x-2)/x
|
f(x)=\frac{3x^{3}-x-2}{x}
|
y=(x^3-2x)^{10}
|
y=(x^{3}-2x)^{10}
|
f(x)=sqrt(3x-21)
|
f(x)=\sqrt{3x-21}
|
f(x)=sqrt(cos(x)+1)
|
f(x)=\sqrt{\cos(x)+1}
|
f(o)=sin(o)60
|
f(o)=\sin(o)60
|
f(x)=2^{-2+3x}
|
f(x)=2^{-2+3x}
|
y=(sin(x))/(x^3+x)
|
y=\frac{\sin(x)}{x^{3}+x}
|
C(x)=90+15x-0.6x^2
|
C(x)=90+15x-0.6x^{2}
|
f(x)=-4x-10
|
f(x)=-4x-10
|
v(x)=4x^3-200x^2+2400x
|
v(x)=4x^{3}-200x^{2}+2400x
|
sin^3(x)
|
\sin^{3}(x)
|
f(n)=n(-1)^n
|
f(n)=n(-1)^{n}
|
f(x)=(-(-5-x)^2-3)/4
|
f(x)=\frac{-(-5-x)^{2}-3}{4}
|
f(x)=(sqrt(x+1))/(x-5)
|
f(x)=\frac{\sqrt{x+1}}{x-5}
|
f(x)= 1/4 x-6
|
f(x)=\frac{1}{4}x-6
|
f(n)=cos(3npi)
|
f(n)=\cos(3nπ)
|
g(x)=sqrt(2x+3)
|
g(x)=\sqrt{2x+3}
|
y=x^2-1,-1<= x<= 2
|
y=x^{2}-1,-1\le\:x\le\:2
|
h(x)=-x^2+2
|
h(x)=-x^{2}+2
|
h(x)= 2/(x+3)-(x+3)/2
|
h(x)=\frac{2}{x+3}-\frac{x+3}{2}
|
y=-x^2+7x-12
|
y=-x^{2}+7x-12
|
domain of x/(3x-1)
|
domain\:\frac{x}{3x-1}
|
f(x)=5e^{-1.3-2}
|
f(x)=5e^{-1.3-2}
|
f(x)=(-2)/(x^2-x-6)
|
f(x)=\frac{-2}{x^{2}-x-6}
|
g(x)=sqrt(2x-1)
|
g(x)=\sqrt{2x-1}
|
f(x)=(-sin(x)-cos^2(x))/(1+sin(x))
|
f(x)=\frac{-\sin(x)-\cos^{2}(x)}{1+\sin(x)}
|
y=cot^2(x/4)
|
y=\cot^{2}(\frac{x}{4})
|
P(x)=2x^3(5x-1)(2x-3)(x-1)
|
P(x)=2x^{3}(5x-1)(2x-3)(x-1)
|
f(x)=log_{10}(x+1)-1
|
f(x)=\log_{10}(x+1)-1
|
f(x)=log_{10}(x+1)-4
|
f(x)=\log_{10}(x+1)-4
|
g(x)=(x+1)/(x^2-3x+2)
|
g(x)=\frac{x+1}{x^{2}-3x+2}
|
f(x)=(1-sqrt(16-x^2))/(|x-2|-3)
|
f(x)=\frac{1-\sqrt{16-x^{2}}}{\left|x-2\right|-3}
|
extreme points of f(x)=(x-4)(x-7)
|
extreme\:points\:f(x)=(x-4)(x-7)
|
f(x)=x^2-12x+38
|
f(x)=x^{2}-12x+38
|
y=4x-1/8 x^4
|
y=4x-\frac{1}{8}x^{4}
|
y=-3cos(pix+2)-6
|
y=-3\cos(πx+2)-6
|
p(x)=(x+3)^2
|
p(x)=(x+3)^{2}
|
f(x)= 1/(x^6+1)
|
f(x)=\frac{1}{x^{6}+1}
|
f(j)=-j^7
|
f(j)=-j^{7}
|
y=x^2+5x+12
|
y=x^{2}+5x+12
|
y=(x+3)^2(2x+1)(2-x)
|
y=(x+3)^{2}(2x+1)(2-x)
|
f(x)=sin(x)cos^3(2cos(x))dx
|
f(x)=\sin(x)\cos^{3}(2\cos(x))dx
|
f(x)=5(4)^x-8
|
f(x)=5(4)^{x}-8
|
slope intercept of m=5y(0,1)
|
slope\:intercept\:m=5y(0,1)
|
f(x)=x^3-3x^2-18x
|
f(x)=x^{3}-3x^{2}-18x
|
f(x)=(1+x^3)^{1/2}
|
f(x)=(1+x^{3})^{\frac{1}{2}}
|
y=(x-3)/(x-4)
|
y=\frac{x-3}{x-4}
|
f(x)=x^2-2.5x+1.5
|
f(x)=x^{2}-2.5x+1.5
|
y=log_{3}(1-x)
|
y=\log_{3}(1-x)
|
y=3|-2x-4|
|
y=3\left|-2x-4\right|
|
y=[sin(x)]^2
|
y=[\sin(x)]^{2}
|
g(x)= 3/(x^2)+1/x
|
g(x)=\frac{3}{x^{2}}+\frac{1}{x}
|
f(x)=4x^2-36
|
f(x)=4x^{2}-36
|
f(x)=x^3+3x^2-8
|
f(x)=x^{3}+3x^{2}-8
|
f(x)=2x^3-2
|
f(x)=2x^{3}-2
|
f(x)=4x^2-15
|
f(x)=4x^{2}-15
|
h(x)=x+3
|
h(x)=x+3
|
f(x)=sqrt(5-x)+sqrt(x^2-9)
|
f(x)=\sqrt{5-x}+\sqrt{x^{2}-9}
|
f(x)=xsin(5x)
|
f(x)=x\sin(5x)
|
y=sqrt(3x-6)
|
y=\sqrt{3x-6}
|
y=sqrt(3x-9)
|
y=\sqrt{3x-9}
|
u(x)=x^2+5
|
u(x)=x^{2}+5
|
f(x)=sqrt(x-3)+7
|
f(x)=\sqrt{x-3}+7
|
f(x)=(4x-3)^{1/3}
|
f(x)=(4x-3)^{\frac{1}{3}}
|
inverse of y= 1/(x+5)
|
inverse\:y=\frac{1}{x+5}
|
shift f(x)=cos(2(x-pi))
|
shift\:f(x)=\cos(2(x-\pi))
|
f(x)=-sqrt(49-x^2)
|
f(x)=-\sqrt{49-x^{2}}
|
f(x)=3+sqrt(6x+36)
|
f(x)=3+\sqrt{6x+36}
|
f(x)=sqrt(|x|-x)
|
f(x)=\sqrt{\left|x\right|-x}
|
f(x)=4x^2+10
|
f(x)=4x^{2}+10
|
y=x^3(3ln(x)-1)
|
y=x^{3}(3\ln(x)-1)
|
f(x)=((x+2)(x-4))/((x+4)(x-5)(x+1))
|
f(x)=\frac{(x+2)(x-4)}{(x+4)(x-5)(x+1)}
|
f(n)= n/4
|
f(n)=\frac{n}{4}
|
f(x)=x-1-(ln(x))/x
|
f(x)=x-1-\frac{\ln(x)}{x}
|
y=2cot(pix)
|
y=2\cot(πx)
|
y=((x^4-13x^2+36)x)/(x^3+2x^2-9x-18)
|
y=\frac{(x^{4}-13x^{2}+36)x}{x^{3}+2x^{2}-9x-18}
|