f(x)=ln((1/2+x)(-2+x))
|
f(x)=\ln((\frac{1}{2}+x)(-2+x))
|
f(x)= 2/(x^2+2)
|
f(x)=\frac{2}{x^{2}+2}
|
inverse of f(x)=2e^{1-x}-2
|
inverse\:f(x)=2e^{1-x}-2
|
F(x)=(12000)/(1+499*1.09^{-0)}
|
F(x)=\frac{12000}{1+499\cdot\:1.09^{-0}}
|
g(t)=(t^2-1)/(t+1)
|
g(t)=\frac{t^{2}-1}{t+1}
|
y=(4x^2-1)(7x^3+x)
|
y=(4x^{2}-1)(7x^{3}+x)
|
f(x)=-8/(x^3)
|
f(x)=-\frac{8}{x^{3}}
|
y= 1/4 x^2+2
|
y=\frac{1}{4}x^{2}+2
|
f(n)= n/(e^n)
|
f(n)=\frac{n}{e^{n}}
|
f(x)=1+2x+x^2+x^3
|
f(x)=1+2x+x^{2}+x^{3}
|
y=(1/2)^{x-2}-2
|
y=(\frac{1}{2})^{x-2}-2
|
f(y)=5y^2-8+6y^4
|
f(y)=5y^{2}-8+6y^{4}
|
f(x)=5x^2+9x+2
|
f(x)=5x^{2}+9x+2
|
intercepts of f(x)=x^4-sqrt(x)
|
intercepts\:f(x)=x^{4}-\sqrt{x}
|
y= 1/3 (6-2t)
|
y=\frac{1}{3}(6-2t)
|
y=arctan(x/3)
|
y=\arctan(\frac{x}{3})
|
f(x)=sqrt(1-\sqrt{1-x^2)}
|
f(x)=\sqrt{1-\sqrt{1-x^{2}}}
|
y=x^2\sqrt[3]{x^2}
|
y=x^{2}\sqrt[3]{x^{2}}
|
f(x)=4x^5-8x^3+3x-4
|
f(x)=4x^{5}-8x^{3}+3x-4
|
f(x)=ln(-x)+2
|
f(x)=\ln(-x)+2
|
f(x)= 4/((x+3)^2+6)
|
f(x)=\frac{4}{(x+3)^{2}+6}
|
y=x|x-6|
|
y=x\left|x-6\right|
|
f(x)=(x^2)/(64)
|
f(x)=\frac{x^{2}}{64}
|
inverse of Y=e^{x+3}
|
inverse\:Y=e^{x+3}
|
f(x)=log_{3}(x-2)-2
|
f(x)=\log_{3}(x-2)-2
|
f(x)=(4x-3)/7
|
f(x)=\frac{4x-3}{7}
|
f(x)=sec^2(x)-tan^2(x)
|
f(x)=\sec^{2}(x)-\tan^{2}(x)
|
r(x)= 5/(x-2)
|
r(x)=\frac{5}{x-2}
|
f(x)=8x-21
|
f(x)=8x-21
|
f(x)=x^8+x+1
|
f(x)=x^{8}+x+1
|
y=0.5(x^2-8x-6)
|
y=0.5(x^{2}-8x-6)
|
f(x)=sqrt(4)+6x^2-x^4-2
|
f(x)=\sqrt{4}+6x^{2}-x^{4}-2
|
h(t)=120t-16t^2
|
h(t)=120t-16t^{2}
|
p(x)=2x+2((400)/x)
|
p(x)=2x+2(\frac{400}{x})
|
domain of f(x)=(x-2)^3+3
|
domain\:f(x)=(x-2)^{3}+3
|
symmetry x^2+6x-7
|
symmetry\:x^{2}+6x-7
|
f(x)=x^3+2x^2-4x+1
|
f(x)=x^{3}+2x^{2}-4x+1
|
F(s)=(2s+3)/((s+4)(s^2+2))
|
F(s)=\frac{2s+3}{(s+4)(s^{2}+2)}
|
f(x)=3(x-2)^3+1
|
f(x)=3(x-2)^{3}+1
|
f(x)=a(x-6)^2-3
|
f(x)=a(x-6)^{2}-3
|
f(x)=sqrt(10+2x)
|
f(x)=\sqrt{10+2x}
|
f(x)=sqrt(x^4-x^2+1)
|
f(x)=\sqrt{x^{4}-x^{2}+1}
|
y=x^2-11x+10
|
y=x^{2}-11x+10
|
f(x)=0.5x^2+2x-16
|
f(x)=0.5x^{2}+2x-16
|
f(x)=(x+4)^2(1-x)
|
f(x)=(x+4)^{2}(1-x)
|
f(x)=(2x+1)/(x^2+x+1)
|
f(x)=\frac{2x+1}{x^{2}+x+1}
|
f(t)=(4-4cos(t))/t
|
f(t)=\frac{4-4\cos(t)}{t}
|
f(x)=2+sec(x)
|
f(x)=2+\sec(x)
|
f(x)=-3x^2+4x-2
|
f(x)=-3x^{2}+4x-2
|
f(x)=(sqrt(3-x^2))/x
|
f(x)=\frac{\sqrt{3-x^{2}}}{x}
|
f(x)=ln(2e^x+1)
|
f(x)=\ln(2e^{x}+1)
|
f(x)=(2/3)^0
|
f(x)=(\frac{2}{3})^{0}
|
f(x)=((4x^2)/(3x))(12x^3)/(2x)
|
f(x)=(\frac{4x^{2}}{3x})^{\circ\:}\frac{12x^{3}}{2x}
|
f(x)=ln(cos(x/2))
|
f(x)=\ln(\cos(\frac{x}{2}))
|
f(x)=sqrt(x)+1/(ln(x))
|
f(x)=\sqrt{x}+\frac{1}{\ln(x)}
|
inverse of f(x)=sqrt(5x+4)
|
inverse\:f(x)=\sqrt{5x+4}
|
f(x)=-2*5^{x-3}+2
|
f(x)=-2\cdot\:5^{x-3}+2
|
S(t)=20+6t+5t^2
|
S(t)=20+6t+5t^{2}
|
f(x)=sqrt(9-e^{x^2)}
|
f(x)=\sqrt{9-e^{x^{2}}}
|
f(x)=(x-4)/(x-9)
|
f(x)=\frac{x-4}{x-9}
|
y=|x+2|-2
|
y=\left|x+2\right|-2
|
f(x)= 1/(x+3)+1
|
f(x)=\frac{1}{x+3}+1
|
f(x)=(-1)/((x-2)^2)
|
f(x)=\frac{-1}{(x-2)^{2}}
|
y=log_{4}(x+2)-1
|
y=\log_{4}(x+2)-1
|
h(x)=-3cos(pix+2)-6
|
h(x)=-3\cos(πx+2)-6
|
y=x^3-3x^2+x+1
|
y=x^{3}-3x^{2}+x+1
|
domain of f(x)=2x+6
|
domain\:f(x)=2x+6
|
f(x)=ln(sqrt(x^2+1)+x)
|
f(x)=\ln(\sqrt{x^{2}+1}+x)
|
f(x)= x/(2x^2-6x-8)
|
f(x)=\frac{x}{2x^{2}-6x-8}
|
f(x)=x^{10}+x^9+x^8+x^3-1
|
f(x)=x^{10}+x^{9}+x^{8}+x^{3}-1
|
f(x)=(x^3)/(3x^2+1)
|
f(x)=\frac{x^{3}}{3x^{2}+1}
|
f(x)=x^3-sin(x)
|
f(x)=x^{3}-\sin(x)
|
y=3+2/(x-3)
|
y=3+\frac{2}{x-3}
|
g(x)={3x-2:-4<= x<= 4,x:4<x<6}
|
g(x)=\left\{3x-2:-4\le\:x\le\:4,x:4<x<6\right\}
|
f(x)=6x^2+12x-18
|
f(x)=6x^{2}+12x-18
|
f(x)=6x^4-x^3-4x^2-x-2
|
f(x)=6x^{4}-x^{3}-4x^{2}-x-2
|
f(x)=5\sqrt[3]{x^7}
|
f(x)=5\sqrt[3]{x^{7}}
|
domain of f(x)=(6x+5)/(5x-2)
|
domain\:f(x)=\frac{6x+5}{5x-2}
|
y=-3x^2-5x
|
y=-3x^{2}-5x
|
f(x)=(x^3+1)+(x^2-5)
|
f(x)=(x^{3}+1)+(x^{2}-5)
|
y=-2x^2+9x-12
|
y=-2x^{2}+9x-12
|
y=tan^3(x/3)
|
y=\tan^{3}(\frac{x}{3})
|
f(x)=x^2*sqrt(5-x)
|
f(x)=x^{2}\cdot\:\sqrt{5-x}
|
f(x)=ln(x)*x^2
|
f(x)=\ln(x)\cdot\:x^{2}
|
C(x)=0.9x^2-306x+36001
|
C(x)=0.9x^{2}-306x+36001
|
f(x)=3sinh(9x)-cosh(9x)
|
f(x)=3\sinh(9x)-\cosh(9x)
|
f(x)=x*0.8
|
f(x)=x\cdot\:0.8
|
y=-3x^2+12
|
y=-3x^{2}+12
|
midpoint (-1,-4)(4,-1)
|
midpoint\:(-1,-4)(4,-1)
|
y=3x+7,(3,4)
|
y=3x+7,(3,4)
|
f(x)=24x^{12}
|
f(x)=24x^{12}
|
y=-3(x-2)^2+12
|
y=-3(x-2)^{2}+12
|
f(x)=(x-10)^2-49
|
f(x)=(x-10)^{2}-49
|
y=-1/(x^2)-2
|
y=-\frac{1}{x^{2}}-2
|
r(x)=(2x^2-5x+3)/(4-2x)
|
r(x)=\frac{2x^{2}-5x+3}{4-2x}
|
f(x)=(x^4)/(x+2)
|
f(x)=\frac{x^{4}}{x+2}
|
y=2x(1-ln(e))
|
y=2x(1-\ln(e))
|
f(x)=(x+2)^3-1
|
f(x)=(x+2)^{3}-1
|
f(x)=sqrt(x-2)+10
|
f(x)=\sqrt{x-2}+10
|
intercepts of y=-x^2-8x-12
|
intercepts\:y=-x^{2}-8x-12
|