g(x)=(2x^2+7x+3)/(x^2+5x+6)
|
g(x)=\frac{2x^{2}+7x+3}{x^{2}+5x+6}
|
f(x)=ln(x/(2-x))
|
f(x)=\ln(\frac{x}{2-x})
|
5/((x-1)(x-4)),x\ne 1
|
\frac{5}{(x-1)(x-4)},x\ne\:1
|
y=x^2-3x-70
|
y=x^{2}-3x-70
|
f(x)=sqrt(3-x)+sqrt(x+4)
|
f(x)=\sqrt{3-x}+\sqrt{x+4}
|
f(x)=-2sin(2pi)x
|
f(x)=-2\sin(2π)x
|
f(x)=-0.03x^{1/2}-8/(x^{1/2)}
|
f(x)=-0.03x^{\frac{1}{2}}-\frac{8}{x^{\frac{1}{2}}}
|
inverse of f(x)= 2/(5+x)
|
inverse\:f(x)=\frac{2}{5+x}
|
f(X)=205.1X^{709.2}
|
f(X)=205.1X^{709.2}
|
f(x)=sqrt(25x^2-9)
|
f(x)=\sqrt{25x^{2}-9}
|
f(s)=(s^2+2s+3)/(s^4+4s^3+11s^2+14s+10)
|
f(s)=\frac{s^{2}+2s+3}{s^{4}+4s^{3}+11s^{2}+14s+10}
|
f(x)=a^{-x}
|
f(x)=a^{-x}
|
f(x)=x(x^2-3)
|
f(x)=x(x^{2}-3)
|
y=(x-5)(x+4)
|
y=(x-5)(x+4)
|
F(x)=xsqrt(6-x)
|
F(x)=x\sqrt{6-x}
|
F(x)=-x^2
|
F(x)=-x^{2}
|
f(x)=x^3-6x^2+x-4
|
f(x)=x^{3}-6x^{2}+x-4
|
f(x)=6x^4-8x^3+1
|
f(x)=6x^{4}-8x^{3}+1
|
line (-3,-2)\land (4,1)
|
line\:(-3,-2)\land\:(4,1)
|
f(x)=(x^2-4)/(x^3)
|
f(x)=\frac{x^{2}-4}{x^{3}}
|
f(x)=e^7
|
f(x)=e^{7}
|
y=-x^5+5x-3
|
y=-x^{5}+5x-3
|
S(r)=2pirh+2pir2
|
S(r)=2πrh+2πr2
|
f(x)=\sqrt[3]{x^2}-3x+6
|
f(x)=\sqrt[3]{x^{2}}-3x+6
|
f(x)=ln(x^4+1)
|
f(x)=\ln(x^{4}+1)
|
f(x)=(x^{5/3})/(2+x)
|
f(x)=\frac{x^{\frac{5}{3}}}{2+x}
|
f(x)=(x-5)/5
|
f(x)=\frac{x-5}{5}
|
y=1000*(0.9)^x
|
y=1000\cdot\:(0.9)^{x}
|
f(y)=(-4y^6-4y^2+4)/(y^5)
|
f(y)=\frac{-4y^{6}-4y^{2}+4}{y^{5}}
|
critical points of f(x)=(2x-14)^4
|
critical\:points\:f(x)=(2x-14)^{4}
|
intercepts of f(x)=-x^2-6x-10
|
intercepts\:f(x)=-x^{2}-6x-10
|
f(x)= 3/(4-x^2)
|
f(x)=\frac{3}{4-x^{2}}
|
f(k)=-k
|
f(k)=-k
|
f(x)= 1/(5x^2)
|
f(x)=\frac{1}{5x^{2}}
|
y= 5/2 sin(2x)
|
y=\frac{5}{2}\sin(2x)
|
f(x)=sin(3x+2)
|
f(x)=\sin(3x+2)
|
f(k)=4k
|
f(k)=4k
|
y=15-4x
|
y=15-4x
|
f(θ)=2sin^2(θ)cos^2(θ)
|
f(θ)=2\sin^{2}(θ)\cos^{2}(θ)
|
f(x)=x^2+3x^2
|
f(x)=x^{2}+3x^{2}
|
f(x)=(2x^2+x-6)/(x^2+3x+2)
|
f(x)=\frac{2x^{2}+x-6}{x^{2}+3x+2}
|
f(x)=2x^4-x^3+49x^2-25x-25
|
f(x)=2x^{4}-x^{3}+49x^{2}-25x-25
|
f(z)=z^2+4z+1
|
f(z)=z^{2}+4z+1
|
f(x)=(sqrt(x+4)-sqrt(x))/2
|
f(x)=\frac{\sqrt{x+4}-\sqrt{x}}{2}
|
f(x)= 1/(x^2)+sqrt(x^3)-4e^x+x-63
|
f(x)=\frac{1}{x^{2}}+\sqrt{x^{3}}-4e^{x}+x-63
|
f(x)=5x^2+10x-2
|
f(x)=5x^{2}+10x-2
|
y=(2x)/((x-3)^2)
|
y=\frac{2x}{(x-3)^{2}}
|
f(x)=2-1
|
f(x)=2-1
|
f(x)=19x
|
f(x)=19x
|
y=0.4x-2
|
y=0.4x-2
|
midpoint (-2,-6)(-5,-2)
|
midpoint\:(-2,-6)(-5,-2)
|
f(A)=2A
|
f(A)=2A
|
f(x)=-16x+48
|
f(x)=-16x+48
|
f(x)= x/(x^2+2x-8)
|
f(x)=\frac{x}{x^{2}+2x-8}
|
f(x)=x^4-4x+7
|
f(x)=x^{4}-4x+7
|
f(a)=4-4a-a^2
|
f(a)=4-4a-a^{2}
|
g(x)=-2x+5
|
g(x)=-2x+5
|
f(x)=(x-2)^{1/3}
|
f(x)=(x-2)^{\frac{1}{3}}
|
y=sqrt(-x)-9
|
y=\sqrt{-x}-9
|
f(x)=ln(1+e^{2x})
|
f(x)=\ln(1+e^{2x})
|
f(x)=-32
|
f(x)=-32
|
range of y=sqrt(x^2-2x-3)
|
range\:y=\sqrt{x^{2}-2x-3}
|
f(x)=(1/3)x^3-(1/6)x^2-(2/3)x
|
f(x)=(\frac{1}{3})x^{3}-(\frac{1}{6})x^{2}-(\frac{2}{3})x
|
y=(x+3)/x
|
y=\frac{x+3}{x}
|
f(y)=(2y^2+3y-7)/y
|
f(y)=\frac{2y^{2}+3y-7}{y}
|
f(x)=sqrt(4x^2)
|
f(x)=\sqrt{4x^{2}}
|
y=2sin(1/4)(x+pi/4)-1
|
y=2\sin(\frac{1}{4})(x+\frac{π}{4})-1
|
f(x)=2x^2-x-7
|
f(x)=2x^{2}-x-7
|
f(x)=2x^2-x+8
|
f(x)=2x^{2}-x+8
|
y=x^{3/2}+4,(0,4),(1,5)
|
y=x^{\frac{3}{2}}+4,(0,4),(1,5)
|
f(x)=4\sqrt[4]{x}
|
f(x)=4\sqrt[4]{x}
|
f(x)=2x^3+6x^2-18x+16
|
f(x)=2x^{3}+6x^{2}-18x+16
|
f(x)=-4cos(x)+4
|
f(x)=-4\cos(x)+4
|
f(y)=16y^2
|
f(y)=16y^{2}
|
F(x)=((x-2))/((x^2-x-6))
|
F(x)=\frac{(x-2)}{(x^{2}-x-6)}
|
y=2cos(3/4 x)
|
y=2\cos(\frac{3}{4}x)
|
p(x)=x^3-5x^2+4x-6
|
p(x)=x^{3}-5x^{2}+4x-6
|
f(x)=(1/(sqrt(x)))^2-4
|
f(x)=(\frac{1}{\sqrt{x}})^{2}-4
|
f(x)=(|x|+3)/(|x|+1)
|
f(x)=\frac{\left|x\right|+3}{\left|x\right|+1}
|
f(x)=(-3)/(x+1)
|
f(x)=\frac{-3}{x+1}
|
range of f(x)=ln(x+6)
|
range\:f(x)=\ln(x+6)
|
f(x)=4*e^x
|
f(x)=4\cdot\:e^{x}
|
h(x)=sqrt(x+5)
|
h(x)=\sqrt{x+5}
|
y=3*2^{x-4}+2
|
y=3\cdot\:2^{x-4}+2
|
f(x)=-2|x-3|+2
|
f(x)=-2\left|x-3\right|+2
|
f(k)=k^2+16
|
f(k)=k^{2}+16
|
f(x)=sqrt(x^2-60x+1000)
|
f(x)=\sqrt{x^{2}-60x+1000}
|
f(x)=2(x-3)^2-5
|
f(x)=2(x-3)^{2}-5
|
f(x)=-6x^2+6x+8
|
f(x)=-6x^{2}+6x+8
|
y=ln(3x-1)
|
y=\ln(3x-1)
|
f(x)=3x^{4/3}-6x^{2/3}-2
|
f(x)=3x^{\frac{4}{3}}-6x^{\frac{2}{3}}-2
|
inverse of f(x)=(49)/(x^2)
|
inverse\:f(x)=\frac{49}{x^{2}}
|
f(x)=x^2+10cos(x)
|
f(x)=x^{2}+10\cos(x)
|
y=sqrt(5x+1)
|
y=\sqrt{5x+1}
|
y=(3x^2-4x+1)^5
|
y=(3x^{2}-4x+1)^{5}
|
f(t)=e^{(-2|t|)}
|
f(t)=e^{(-2\left|t\right|)}
|
y=ln(x^2+4)
|
y=\ln(x^{2}+4)
|
y=-5x^2+x+5
|
y=-5x^{2}+x+5
|
y=5x^2+4
|
y=5x^{2}+4
|
f(x)=2^{x+3}+1
|
f(x)=2^{x+3}+1
|