log_{2}(x-3),x>= 4
|
\log_{2}(x-3),x\ge\:4
|
y=log_{7}(3x-2)
|
y=\log_{7}(3x-2)
|
y=5x^2+2x+8
|
y=5x^{2}+2x+8
|
f(t)= 3/(t^4)+2\sqrt[3]{t}
|
f(t)=\frac{3}{t^{4}}+2\sqrt[3]{t}
|
f(t)=10(t^3+4t^2+t-6)
|
f(t)=10(t^{3}+4t^{2}+t-6)
|
f(x)=2x^2+6x+13
|
f(x)=2x^{2}+6x+13
|
g(x)= 1/(x^2-x)
|
g(x)=\frac{1}{x^{2}-x}
|
f(x)=e^{((2x+5))/3}\mod 3
|
f(x)=e^{\frac{(2x+5)}{3}}\mod\:3
|
periodicity of f(x)=-1+3cos(3/2 x)
|
periodicity\:f(x)=-1+3\cos(\frac{3}{2}x)
|
f(x)-1/3 x^3,-1<= f<= 2
|
f(x)-\frac{1}{3}x^{3},-1\le\:f\le\:2
|
f(x)=(3x+5)/x
|
f(x)=\frac{3x+5}{x}
|
f(x)=cos^{3/2}(x)
|
f(x)=\cos^{\frac{3}{2}}(x)
|
f(x)=sqrt(-x-2+2)
|
f(x)=\sqrt{-x-2+2}
|
y=4.5x+28
|
y=4.5x+28
|
(s-4)/((s+1)(s+2)),s>-1
|
\frac{s-4}{(s+1)(s+2)},s>-1
|
f(t)=t^2+t^4
|
f(t)=t^{2}+t^{4}
|
y= x/(4x-x^3)
|
y=\frac{x}{4x-x^{3}}
|
f(θ)=(cos(θ))/(sec(θ)-tan(θ))
|
f(θ)=\frac{\cos(θ)}{\sec(θ)-\tan(θ)}
|
f(x)=(4x+6)/(sqrt(x^2+3x+4))
|
f(x)=\frac{4x+6}{\sqrt{x^{2}+3x+4}}
|
parity f(x)=-x^3-3x
|
parity\:f(x)=-x^{3}-3x
|
g(x)=|x-2|+|x+1|
|
g(x)=\left|x-2\right|+\left|x+1\right|
|
f(x)=cos(x/6)
|
f(x)=\cos(\frac{x}{6})
|
f(x)=6x^3-9x^2-108x
|
f(x)=6x^{3}-9x^{2}-108x
|
f(x)=-2x^2+1/2
|
f(x)=-2x^{2}+\frac{1}{2}
|
f(w)=((w-3)/(w+2))^2
|
f(w)=(\frac{w-3}{w+2})^{2}
|
f(x)=-(x+1)/2+ln(x/(x+1))
|
f(x)=-\frac{x+1}{2}+\ln(\frac{x}{x+1})
|
f(x)=sqrt(1+1/x)
|
f(x)=\sqrt{1+\frac{1}{x}}
|
f(k)=4^{k+1}
|
f(k)=4^{k+1}
|
f(x)=5x^3+3x^2-2x+6
|
f(x)=5x^{3}+3x^{2}-2x+6
|
f(θ)= 4/(2sin(θ)-1)
|
f(θ)=\frac{4}{2\sin(θ)-1}
|
range of f(x)=8x-5
|
range\:f(x)=8x-5
|
L(x)=-x^2+14x-40
|
L(x)=-x^{2}+14x-40
|
f(x)=(4x-1)/(2x^2+3x-1)
|
f(x)=\frac{4x-1}{2x^{2}+3x-1}
|
y=2sin(3x-21)+4
|
y=2\sin(3x-21)+4
|
f(x)=e^{sin(x)}ln(x)
|
f(x)=e^{\sin(x)}\ln(x)
|
f(x)=-5x+11
|
f(x)=-5x+11
|
f(x)=10-log_{10}(x^2+2x-8)
|
f(x)=10-\log_{10}(x^{2}+2x-8)
|
f(x)=((2x+1))/((-5x+3))
|
f(x)=\frac{(2x+1)}{(-5x+3)}
|
y=-2\sqrt[3]{x}+4
|
y=-2\sqrt[3]{x}+4
|
y= 1/(3-x)+sqrt(2x-2)
|
y=\frac{1}{3-x}+\sqrt{2x-2}
|
f(-3)=-2a^2-5a+4
|
f(-3)=-2a^{2}-5a+4
|
inverse of f(x)= 4/(-x+1)+2
|
inverse\:f(x)=\frac{4}{-x+1}+2
|
f(x)=3x^3-2x^2+2
|
f(x)=3x^{3}-2x^{2}+2
|
f(x)=2sqrt(2-x)
|
f(x)=2\sqrt{2-x}
|
f(r)=(pir^2)/4
|
f(r)=\frac{πr^{2}}{4}
|
y=2(x+1)^2+6
|
y=2(x+1)^{2}+6
|
f(x)=20*x
|
f(x)=20\cdot\:x
|
f(x)=|x|+x^2
|
f(x)=\left|x\right|+x^{2}
|
f(x)=6x^2+3x-4
|
f(x)=6x^{2}+3x-4
|
f(x)=(3x^4)(2x^5)
|
f(x)=(3x^{4})(2x^{5})
|
y=(x+1)/(x^2+x-2)
|
y=\frac{x+1}{x^{2}+x-2}
|
f(x)=(10)/(x^3)
|
f(x)=\frac{10}{x^{3}}
|
extreme points of f(x)=2xsqrt(4-x^2)
|
extreme\:points\:f(x)=2x\sqrt{4-x^{2}}
|
inverse of 9/5 C+32
|
inverse\:\frac{9}{5}C+32
|
y=sec(θ)+tan(θ)
|
y=\sec(θ)+\tan(θ)
|
f(x)=ax^3
|
f(x)=ax^{3}
|
f(x)=sqrt(10-7x)
|
f(x)=\sqrt{10-7x}
|
f(x)= 7/(x+sqrt(3))
|
f(x)=\frac{7}{x+\sqrt{3}}
|
f(x)=sin^4(x)+cos^4(x)-1
|
f(x)=\sin^{4}(x)+\cos^{4}(x)-1
|
f(n)=-sin(2pin)
|
f(n)=-\sin(2πn)
|
y=csc(t/2)
|
y=\csc(\frac{t}{2})
|
f(x)=(16x^2+5x+8)^5
|
f(x)=(16x^{2}+5x+8)^{5}
|
f(x)=(4x^2-x)/(x^2)
|
f(x)=\frac{4x^{2}-x}{x^{2}}
|
f(x)=sqrt(x^2+6x+2)-sqrt(x^2-4x+1)
|
f(x)=\sqrt{x^{2}+6x+2}-\sqrt{x^{2}-4x+1}
|
inverse of sqrt(x+3)
|
inverse\:\sqrt{x+3}
|
f(x)=x^3-6x^2+10x-8
|
f(x)=x^{3}-6x^{2}+10x-8
|
f(t)=-2t+5
|
f(t)=-2t+5
|
f(t)=100^{t^2-0.5t}
|
f(t)=100^{t^{2}-0.5t}
|
f(x)=\sqrt[3]{(x^2-8x+6)}
|
f(x)=\sqrt[3]{(x^{2}-8x+6)}
|
y=sqrt(2x^2+1)
|
y=\sqrt{2x^{2}+1}
|
y=6(2^x)
|
y=6(2^{x})
|
Y(x)=1.499x+2.311
|
Y(x)=1.499x+2.311
|
f(x)=(x^2+5x+6)/(x+2)
|
f(x)=\frac{x^{2}+5x+6}{x+2}
|
f(x)=sqrt(x^2-7x+10)+sqrt(x)
|
f(x)=\sqrt{x^{2}-7x+10}+\sqrt{x}
|
f(b)=log_{b}(50)
|
f(b)=\log_{b}(50)
|
line (4,0),(20,13.5)
|
line\:(4,0),(20,13.5)
|
f(x)=3x^2-8x+4
|
f(x)=3x^{2}-8x+4
|
y=((e^x-e^{-x}))/2
|
y=\frac{(e^{x}-e^{-x})}{2}
|
f(u)=sin(u/2)
|
f(u)=\sin(\frac{u}{2})
|
f(x)=((x-1))/(x^3+6x^2+2x-4)
|
f(x)=\frac{(x-1)}{x^{3}+6x^{2}+2x-4}
|
f(x)=sqrt(x+1)+sqrt(3-x)
|
f(x)=\sqrt{x+1}+\sqrt{3-x}
|
y= 2/5 x^2
|
y=\frac{2}{5}x^{2}
|
f(x)=(x^3-4x^2+x+6)/(x^2-2x-3)
|
f(x)=\frac{x^{3}-4x^{2}+x+6}{x^{2}-2x-3}
|
f(x)=9|x|
|
f(x)=9\left|x\right|
|
f(x)=-xcos(x)+sin(x)
|
f(x)=-x\cos(x)+\sin(x)
|
f(x)=85*0.8x
|
f(x)=85\cdot\:0.8x
|
symmetry (9x^2-36)/(x^2-9)
|
symmetry\:\frac{9x^{2}-36}{x^{2}-9}
|
P(z<z)=0.95
|
P(z<z)=0.95
|
f(x)=sqrt(x)-cos(x)
|
f(x)=\sqrt{x}-\cos(x)
|
f(x)=3x^2-30x+77
|
f(x)=3x^{2}-30x+77
|
f(x)=(4x+8)/(3-sqrt(x^2+5))
|
f(x)=\frac{4x+8}{3-\sqrt{x^{2}+5}}
|
f(x)= 2/(sqrt(x^3-3x))
|
f(x)=\frac{2}{\sqrt{x^{3}-3x}}
|
y=csc^4(x)-2cot^2(x)
|
y=\csc^{4}(x)-2\cot^{2}(x)
|
y=x-3x^{1/3}
|
y=x-3x^{\frac{1}{3}}
|
g(x)=2(x+3)2+8
|
g(x)=2(x+3)2+8
|
inverse of f(x)=(x+1)/6
|
inverse\:f(x)=\frac{x+1}{6}
|
f(n)=2^{n+3}
|
f(n)=2^{n+3}
|
y=sqrt(4x+8)
|
y=\sqrt{4x+8}
|
f(x)=(2x^2)/(x^2-25)
|
f(x)=\frac{2x^{2}}{x^{2}-25}
|
f(x)=x^3+2x^2+2
|
f(x)=x^{3}+2x^{2}+2
|