derivative of (4x/((x-1)^2))
|
\frac{d}{dx}(\frac{4x}{(x-1)^{2}})
|
derivative of y=\sqrt[3]{x}-1/(x^2)
|
derivative\:of\:y=\sqrt[3]{x}-\frac{1}{x^{2}}
|
integral from 0 to 2 of sqrt(2x^2+1)
|
\int_{\:0}^{2}\sqrt{2x^{2}+1}dx
|
(dy)/(dx)=(x-y-1)^2
|
\frac{dy}{dx}=(x-y-1)^{2}
|
partial derivative of-2cos(2x+y-8sin(x-y))
|
\frac{\partial}{\partial\:x}(-2\cos(2x+y)-8\sin(x-y))
|
integral from 0 to 1 of x/(sqrt(1+x^2))
|
\int_{\:0}^{1}\frac{x}{\sqrt{1+x^{2}}}dx
|
sum from n=1 to infinity}(5-2\sqrt{n of)/(n^3)
|
\sum_{n=1}^{\infty\:}\frac{5-2\sqrt{n}}{n^{3}}
|
integral of ((ln(x))^{36})/x
|
\int\:\frac{(\ln(x))^{36}}{x}dx
|
integral from-1 to 1 of (6-6x^2)^2
|
\int_{\:-1}^{1}(6-6x^{2})^{2}dx
|
limit as x approaching infinity of arctan(5)-arctan(x+1)
|
\lim_{x\to\:\infty\:}(\arctan(5)-\arctan(x+1))
|
sum from n=1 to infinity of sin(-3/n)-sin(-3/(n+1))
|
\sum_{n=1}^{\infty\:}\sin(-\frac{3}{n})-\sin(-\frac{3}{n+1})
|
(\partial)/(\partial x\partial x)((xy)/(x-y))
|
\frac{\partial}{\partial\:x\partial\:x}(\frac{xy}{x-y})
|
8x^2y^{\prime}=y^{\prime}+5xe^{-y}
|
8x^{2}y^{\prime\:}=y^{\prime\:}+5xe^{-y}
|
(dy)/(dx)+y^3x+2y=0
|
\frac{dy}{dx}+y^{3}x+2y=0
|
derivative of ((x^2-1^3)/((2x+1)^5))
|
\frac{d}{dx}(\frac{(x^{2}-1)^{3}}{(2x+1)^{5}})
|
limit as x approaching infinity of (cos(x))/(4x)
|
\lim_{x\to\:\infty\:}(\frac{\cos(x)}{4x})
|
integral of 2/(sqrt(x))+(sqrt(x))/2
|
\int\:\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{2}dx
|
limit as x approaching π/2 of (csc(4x))/(csc(2x))
|
\lim_{x\to\:\frac{π}{2}}(\frac{\csc(4x)}{\csc(2x)})
|
tangent of f(x)=(2x-1)/(x+5),\at x=1
|
tangent\:of\:f(x)=\frac{2x-1}{x+5},\at\:x=1
|
limit as x approaching-infinity of (4x^6)/(x^3-8)
|
\lim_{x\to\:-\infty\:}(\frac{4x^{6}}{x^{3}-8})
|
limit as θ approaching π/3 of (tan(θ))/(sin^2(θ))
|
\lim_{θ\to\:\frac{π}{3}}(\frac{\tan(θ)}{\sin^{2}(θ)})
|
integral of (x^2)/((x+1)^{50)}
|
\int\:\frac{x^{2}}{(x+1)^{50}}dx
|
partial derivative of 2xe^{-y}
|
\frac{\partial}{\partial\:x}(2xe^{-y})
|
integral from 0 to 2 of integral from 0 to 2 of ((x+y))/8 (y^2)
|
\int_{\:0}^{2}\int_{0}^{2}\frac{(x+y)}{8}(y^{2})dxdy
|
integral of (2x-1)ln(17x)
|
\int\:(2x-1)\ln(17x)dx
|
limit as x approaching 4 of (x+3)^5-\sqrt[3]{4x^2}
|
\lim_{x\to\:4}((x+3)^{5}-\sqrt[3]{4x^{2}})
|
area 2/x ,4x, 4/x
|
area\:\frac{2}{x},4x,\frac{4}{x}
|
taylor 5x
|
taylor\:5x
|
xy^{\prime}-4y=x^6e^x
|
xy^{\prime\:}-4y=x^{6}e^{x}
|
limit as x approaching infinity of (x^{99})/(e^x)
|
\lim_{x\to\:\infty\:}(\frac{x^{99}}{e^{x}})
|
tangent of f(x)=(x-5)9,\at \quad x=6
|
tangent\:of\:f(x)=(x-5)9,\at\:\quad\:x=6
|
sum from n=1 to infinity of ((n+2)(x+5)^n)/(n*6^n)
|
\sum_{n=1}^{\infty\:}\frac{(n+2)(x+5)^{n}}{n\cdot\:6^{n}}
|
integral from 1 to a of (1/(sqrt(4x)))
|
\int_{\:1}^{a}(\frac{1}{\sqrt{4x}})dx
|
derivative of e^{sin(x)}cos(x)
|
derivative\:of\:e^{\sin(x)}\cos(x)
|
limit as x approaching-1 of (x+1)/(sqrt(6x^2+3)+3x)
|
\lim_{x\to\:-1}(\frac{x+1}{\sqrt{6x^{2}+3}+3x})
|
integral of 2xsec^2(3x)
|
\int\:2x\sec^{2}(3x)dx
|
integral from-2 to 4 of (x^2-2x-8)
|
\int_{\:-2}^{4}(x^{2}-2x-8)dx
|
integral from 0 to 2 of x/(sqrt(1+x^2))
|
\int_{\:0}^{2}\frac{x}{\sqrt{1+x^{2}}}dx
|
limit as x approaching infinity of (1+5/x)^{x/2}
|
\lim_{x\to\:\infty\:}((1+\frac{5}{x})^{\frac{x}{2}})
|
integral from 0 to infinity of (2*e^{-5*x})^2
|
\int_{\:0}^{\infty\:}(2\cdot\:e^{-5\cdot\:x})^{2}dx
|
derivative of f(x)=3x^2-5x+2
|
\frac{d}{dx}f(x)=3x^{2}-5x+2
|
implicit derivative (dy)/(dx),x^5y+5xy^5=x+y
|
implicit\:derivative\:\frac{dy}{dx},x^{5}y+5xy^{5}=x+y
|
limit as x approaching 2+of cos(x-2)
|
\lim_{x\to\:2+}(\cos(x-2))
|
integral of ye^{y^2}
|
\int\:ye^{y^{2}}dy
|
xy^{\prime}-2y=x2
|
xy^{\prime\:}-2y=x2
|
integral from 0 to 3 of 1/((1-x)^2)
|
\int_{\:0}^{3}\frac{1}{(1-x)^{2}}dx
|
integral from 0 to (pi)/2 of cos(2\theta)theta
|
\int_{\:0}^{\frac{\pi}{2}}\cos(2\theta)d\theta
|
integral of (7x^2+9x+7)/((x^2+1)^2)
|
\int\:\frac{7x^{2}+9x+7}{(x^{2}+1)^{2}}dx
|
limit as x approaching infinity of (sin(17x))/x
|
\lim_{x\to\:\infty\:}(\frac{\sin(17x)}{x})
|
limit as x approaching 1 of (1/(x^2)-1)/(x-1)
|
\lim_{x\to\:1}(\frac{\frac{1}{x^{2}}-1}{x-1})
|
derivative of x/(4x+9)
|
derivative\:of\:\frac{x}{4x+9}
|
tangent of f(x)=e^{9x}cos(pi x),\at x=0
|
tangent\:of\:f(x)=e^{9x}\cos(\pi\:x),\at\:x=0
|
derivative of 9x^8e^x+e^xx^9
|
derivative\:of\:9x^{8}e^{x}+e^{x}x^{9}
|
integral of (x^4-e^{-2x})
|
\int\:(x^{4}-e^{-2x})dx
|
limit as x approaching 1 of arcsin(((1-sqrt(x)))/(1-x))
|
\lim_{x\to\:1}(\arcsin(\frac{(1-\sqrt{x})}{1-x}))
|
limit as x approaching π/2 of (1-sin(x))/((π/2-x)^2)
|
\lim_{x\to\:\frac{π}{2}}(\frac{1-\sin(x)}{(\frac{π}{2}-x)^{2}})
|
limit as x approaching 0 of (sqrt(4(a+h))-sqrt(4a))/h
|
\lim_{x\to\:0}(\frac{\sqrt{4(a+h)}-\sqrt{4a}}{h})
|
integral of cos(t)tan(t)
|
\int\:\cos(t)\tan(t)dt
|
derivative of x^4e^{4x}
|
\frac{d}{dx}(x^{4}e^{4x})
|
(\partial)/(\partial x)(sin(x^2+xy))
|
\frac{\partial\:}{\partial\:x}(\sin(x^{2}+xy))
|
limit as x approaching 0+of ((9/(x+ax))-(9/x))/((ax))
|
\lim_{x\to\:0+}(\frac{(\frac{9}{x+ax})-(\frac{9}{x})}{(ax)})
|
y^{\prime}=y(xy^4-1)
|
y^{\prime\:}=y(xy^{4}-1)
|
x^2(dy)/(dx)+xy=x^3+1
|
x^{2}\frac{dy}{dx}+xy=x^{3}+1
|
derivative of 2x+6
|
\frac{d}{dx}(2x+6)
|
integral from 0 to 1 of integral from x/2 to 2x of 1
|
\int_{\:0}^{1}\int_{\frac{x}{2}}^{2x}1dydx
|
limit as x approaching infinity of (1-3/x)^x
|
\lim_{x\to\:\infty\:}((1-\frac{3}{x})^{x})
|
limit as x approaching infinity of x/(sqrt(x^3+6))
|
\lim_{x\to\:\infty\:}(\frac{x}{\sqrt{x^{3}+6}})
|
limit as x approaching 2 of (x^5-32)/(x-2)
|
\lim_{x\to\:2}(\frac{x^{5}-32}{x-2})
|
(\partial)/(\partial x)(ln(x+z))
|
\frac{\partial\:}{\partial\:x}(\ln(x+z))
|
integral of 5sin(6x)+6sin(5x)
|
\int\:5\sin(6x)+6\sin(5x)
|
integral from 0 to 11/2 of (5y-y^2)-(y^2+6y)
|
\int_{\:0}^{\frac{11}{2}}(5y-y^{2})-(y^{2}+6y)dy
|
derivative of (x-2^3(x-1))
|
\frac{d}{dx}((x-2)^{3}(x-1))
|
limit as x approaching+9 of (40+sqrt(x))/(sqrt(40+x))
|
\lim_{x\to\:+9}(\frac{40+\sqrt{x}}{\sqrt{40+x}})
|
derivative of (x-1)/(x+1)
|
derivative\:of\:\frac{x-1}{x+1}
|
derivative of y=(2x+1)^3+6x(2x+1)^2
|
derivative\:of\:y=(2x+1)^{3}+6x(2x+1)^{2}
|
partial derivative of e^{-3x}cos(6y)
|
\frac{\partial}{\partial\:y}(e^{-3x}\cos(6y))
|
(dy)/(dx)=ytan(x)
|
\frac{dy}{dx}=ytan(x)
|
implicit derivative (dy)/(dx),y=5arctan(x-sqrt(1+x^2))
|
implicit\:derivative\:\frac{dy}{dx},y=5\arctan(x-\sqrt{1+x^{2}})
|
integral of x+12x^2
|
\int\:x+12x^{2}dx
|
f(x)=(x-2)^2(x-3)^3
|
f(x)=(x-2)^{2}(x-3)^{3}
|
integral of (x+2)/(x^2+x)
|
\int\:\frac{x+2}{x^{2}+x}
|
limit as x approaching 1 of (sqrt(x)-1)/(x^2-1)
|
\lim_{x\to\:1}(\frac{\sqrt{x}-1}{x^{2}-1})
|
implicit derivative (dy)/(dx),sqrt(xy)=x^7y+72
|
implicit\:derivative\:\frac{dy}{dx},\sqrt{xy}=x^{7}y+72
|
limit as x approaching-infinity of ln(x-2)
|
\lim_{x\to\:-\infty\:}(\ln(x-2))
|
limit as x approaching infinity of (1-cos(5x))/(x^2)
|
\lim_{x\to\:\infty\:}(\frac{1-\cos(5x)}{x^{2}})
|
derivative of y=(tan(1/x))^{sec(1/x)}
|
derivative\:of\:y=(\tan(\frac{1}{x}))^{\sec(\frac{1}{x})}
|
limit as x approaching 1 of (x^2-sqrt(x))/(1-x)
|
\lim_{x\to\:1}(\frac{x^{2}-\sqrt{x}}{1-x})
|
integral from 0 to 2 of (integral from 1+y to 2 of ((x+y)/8))
|
\int_{\:0}^{2}(\int_{1+y}^{2}(\frac{x+y}{8})dx)dy
|
integral of \sqrt[3]{ax^2}
|
\int\:\sqrt[3]{ax^{2}}dx
|
derivative of csc(1-2x^2)
|
\frac{d}{dx}(\csc(1-2x)^{2})
|
integral of (3^{2x})/(1+3^{2x)}
|
\int\:\frac{3^{2x}}{1+3^{2x}}dx
|
limit as x approaching infinity of tan(7/x)
|
\lim_{x\to\:\infty\:}(\tan(\frac{7}{x}))
|
integral from 0 to 2 of (x^4-3/4 x^2+2/3 x-1)
|
\int_{\:0}^{2}(x^{4}-\frac{3}{4}x^{2}+\frac{2}{3}x-1)dx
|
derivative of 6x^2+15xy+3y^2
|
\frac{d}{dx}(6x^{2}+15xy+3y^{2})
|
integral of (e^xx)
|
\int\:(e^{x}x)dx
|
limit as x approaching infinity of ((e^{2x}-8-19x))/((19x)^2)
|
\lim_{x\to\:\infty\:}(\frac{(e^{2x}-8-19x)}{(19x)^{2}})
|
y^{\prime \prime}+49y=0
|
y^{\prime\:\prime\:}+49y=0
|
integral of 64sin^2(x)
|
\int\:64\sin^{2}(x)dx
|
tangent of f(x)=x^3-11x,\at x=3
|
tangent\:of\:f(x)=x^{3}-11x,\at\:x=3
|
sum from n=2 to infinity of (3/4)^n
|
\sum_{n=2}^{\infty\:}(\frac{3}{4})^{n}
|