Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

tan^{22}(x)=sec^2(x)-1

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

tan22(x)=sec2(x)−1

Soluzione

x=πn,x=4π​+πn,x=43π​+πn
+1
Gradi
x=0∘+180∘n,x=45∘+180∘n,x=135∘+180∘n
Fasi della soluzione
tan22(x)=sec2(x)−1
Sottrarre sec2(x)−1 da entrambi i latitan22(x)−sec2(x)+1=0
Riscrivere utilizzando identità trigonometriche
1−sec2(x)+tan22(x)
Usa l'identità pitagorica: sec2(x)=tan2(x)+1sec2(x)−1=tan2(x)=tan22(x)−tan2(x)
tan22(x)−tan2(x)=0
Risolvi per sostituzione
tan22(x)−tan2(x)=0
Sia: tan(x)=uu22−u2=0
u22−u2=0:u=0,u=1,u=−1
u22−u2=0
Riscrivi l'equazione con v=u2 e v11=u22v11−v=0
Risolvi v11−v=0:v=0,v=−1,v=1
v11−v=0
Fattorizza v11−v:v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v11−v
Fattorizzare dal termine comune v:v(v10−1)
v11−v
Applica la regola degli esponenti: ab+c=abacv11=v10v=v10v−v
Fattorizzare dal termine comune v=v(v10−1)
=v(v10−1)
Fattorizza v10−1:(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v10−1
Riscrivi v10−1 come (v5)2−12
v10−1
Riscrivi 1 come 12=v10−12
Applica la regola degli esponenti: abc=(ab)cv10=(v5)2=(v5)2−12
=(v5)2−12
Applicare la formula differenza di due quadrati: x2−y2=(x+y)(x−y)(v5)2−12=(v5+1)(v5−1)=(v5+1)(v5−1)
Fattorizza v5+1:(v+1)(v4−v3+v2−v+1)
v5+1
Riscrivi 1 come 15=v5+15
Applicare la regola di fattorizzazione: xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddv5+15=(v+1)(v4−v3+v2−v+1)=(v+1)(v4−v3+v2−v+1)
=(v+1)(v4−v3+v2−v+1)(v5−1)
Fattorizza v5−1:(v−1)(v4+v3+v2+v+1)
v5−1
Riscrivi 1 come 15=v5−15
Applicare la regola di fattorizzazione: xn−yn=(x−y)(xn−1+xn−2y+⋯+xyn−2yn−1)v5−15=(v−1)(v4+v3+v2+v+1)=(v−1)(v4+v3+v2+v+1)
=(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
=v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)
v(v+1)(v4−v3+v2−v+1)(v−1)(v4+v3+v2+v+1)=0
Usando il Principio del Fattore Zero: If ab=0allora a=0o b=0v=0orv+1=0orv4−v3+v2−v+1=0orv−1=0orv4+v3+v2+v+1=0
Risolvi v+1=0:v=−1
v+1=0
Spostare 1a destra dell'equazione
v+1=0
Sottrarre 1 da entrambi i lativ+1−1=0−1
Semplificarev=−1
v=−1
Risolvi v4−v3+v2−v+1=0:Nessuna soluzione per v∈R
v4−v3+v2−v+1=0
Trova una soluzione per v4−v3+v2−v+1=0 utilizzando Newton-Raphson:Nessuna soluzione per v∈R
v4−v3+v2−v+1=0
Definizione di approssimazione di Newton-Raphson
f(v)=v4−v3+v2−v+1
Trova f′(v):4v3−3v2+2v−1
dvd​(v4−v3+v2−v+1)
Applica la regola della somma/differenza: (f±g)′=f′±g′=dvd​(v4)−dvd​(v3)+dvd​(v2)−dvdv​+dvd​(1)
dvd​(v4)=4v3
dvd​(v4)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=4v4−1
Semplificare=4v3
dvd​(v3)=3v2
dvd​(v3)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=3v3−1
Semplificare=3v2
dvd​(v2)=2v
dvd​(v2)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=2v2−1
Semplificare=2v
dvdv​=1
dvdv​
Applica la derivata comune: dvdv​=1=1
dvd​(1)=0
dvd​(1)
Derivata di una costante: dxd​(a)=0=0
=4v3−3v2+2v−1+0
Semplificare=4v3−3v2+2v−1
Sia v0​=1Calcola vn+1​ fino a Deltavn+1​<0.000001
v1​=0.5:Δv1​=0.5
f(v0​)=14−13+12−1+1=1f′(v0​)=4⋅13−3⋅12+2⋅1−1=2v1​=0.5
Δv1​=∣0.5−1∣=0.5Δv1​=0.5
v2​=3.25:Δv2​=2.75
f(v1​)=0.54−0.53+0.52−0.5+1=0.6875f′(v1​)=4⋅0.53−3⋅0.52+2⋅0.5−1=−0.25v2​=3.25
Δv2​=∣3.25−0.5∣=2.75Δv2​=2.75
v3​=2.48013…:Δv3​=0.76986…
f(v2​)=3.254−3.253+3.252−3.25+1=85.55078…f′(v2​)=4⋅3.253−3⋅3.252+2⋅3.25−1=111.125v3​=2.48013…
Δv3​=∣2.48013…−3.25∣=0.76986…Δv3​=0.76986…
v4​=1.89445…:Δv4​=0.58568…
f(v3​)=2.48013…4−2.48013…3+2.48013…2−2.48013…+1=27.25130…f′(v3​)=4⋅2.48013…3−3⋅2.48013…2+2⋅2.48013…−1=46.52924…v4​=1.89445…
Δv4​=∣1.89445…−2.48013…∣=0.58568…Δv4​=0.58568…
v5​=1.43781…:Δv5​=0.45664…
f(v4​)=1.89445…4−1.89445…3+1.89445…2−1.89445…+1=8.77607…f′(v4​)=4⋅1.89445…3−3⋅1.89445…2+2⋅1.89445…−1=19.21862…v5​=1.43781…
Δv5​=∣1.43781…−1.89445…∣=0.45664…Δv5​=0.45664…
v6​=1.05030…:Δv6​=0.38750…
f(v5​)=1.43781…4−1.43781…3+1.43781…2−1.43781…+1=2.93085…f′(v5​)=4⋅1.43781…3−3⋅1.43781…2+2⋅1.43781…−1=7.56332…v6​=1.05030…
Δv6​=∣1.05030…−1.43781…∣=0.38750…Δv6​=0.38750…
v7​=0.59224…:Δv7​=0.45805…
f(v6​)=1.05030…4−1.05030…3+1.05030…2−1.05030…+1=1.11112…f′(v6​)=4⋅1.05030…3−3⋅1.05030…2+2⋅1.05030…−1=2.42572…v7​=0.59224…
Δv7​=∣0.59224…−1.05030…∣=0.45805…Δv7​=0.45805…
v8​=18.88435…:Δv8​=18.29210…
f(v7​)=0.59224…4−0.59224…3+0.59224…2−0.59224…+1=0.67380…f′(v7​)=4⋅0.59224…3−3⋅0.59224…2+2⋅0.59224…−1=−0.03683…v8​=18.88435…
Δv8​=∣18.88435…−0.59224…∣=18.29210…Δv8​=18.29210…
v9​=14.22188…:Δv9​=4.66247…
f(v8​)=18.88435…4−18.88435…3+18.88435…2−18.88435…+1=120781.11894…f′(v8​)=4⋅18.88435…3−3⋅18.88435…2+2⋅18.88435…−1=25904.96293…v9​=14.22188…
Δv9​=∣14.22188…−18.88435…∣=4.66247…Δv9​=4.66247…
v10​=10.72385…:Δv10​=3.49802…
f(v9​)=14.22188…4−14.22188…3+14.22188…2−14.22188…+1=38222.36483…f′(v9​)=4⋅14.22188…3−3⋅14.22188…2+2⋅14.22188…−1=10926.83534…v10​=10.72385…
Δv10​=∣10.72385…−14.22188…∣=3.49802…Δv10​=3.49802…
v11​=8.09884…:Δv11​=2.62501…
f(v10​)=10.72385…4−10.72385…3+10.72385…2−10.72385…+1=12097.26043…f′(v10​)=4⋅10.72385…3−3⋅10.72385…2+2⋅10.72385…−1=4608.46147…v11​=8.09884…
Δv11​=∣8.09884…−10.72385…∣=2.62501…Δv11​=2.62501…
v12​=6.12820…:Δv12​=1.97063…
f(v11​)=8.09884…4−8.09884…3+8.09884…2−8.09884…+1=3829.49182…f′(v11​)=4⋅8.09884…3−3⋅8.09884…2+2⋅8.09884…−1=1943.27695…v12​=6.12820…
Δv12​=∣6.12820…−8.09884…∣=1.97063…Δv12​=1.97063…
v13​=4.64785…:Δv13​=1.48034…
f(v12​)=6.12820…4−6.12820…3+6.12820…2−6.12820…+1=1212.65418…f′(v12​)=4⋅6.12820…3−3⋅6.12820…2+2⋅6.12820…−1=819.16882…v13​=4.64785…
Δv13​=∣4.64785…−6.12820…∣=1.48034…Δv13​=1.48034…
v14​=3.53453…:Δv14​=1.11332…
f(v13​)=4.64785…4−4.64785…3+4.64785…2−4.64785…+1=384.22115…f′(v13​)=4⋅4.64785…3−3⋅4.64785…2+2⋅4.64785…−1=345.11129…v14​=3.53453…
Δv14​=∣3.53453…−4.64785…∣=1.11332…Δv14​=1.11332…
v15​=2.69527…:Δv15​=0.83926…
f(v14​)=3.53453…4−3.53453…3+3.53453…2−3.53453…+1=121.87505…f′(v14​)=4⋅3.53453…3−3⋅3.53453…2+2⋅3.53453…−1=145.21705…v15​=2.69527…
Δv15​=∣2.69527…−3.53453…∣=0.83926…Δv15​=0.83926…
v16​=2.05895…:Δv16​=0.63632…
f(v15​)=2.69527…4−2.69527…3+2.69527…2−2.69527…+1=38.76232…f′(v15​)=4⋅2.69527…3−3⋅2.69527…2+2⋅2.69527…−1=60.91625…v16​=2.05895…
Δv16​=∣2.05895…−2.69527…∣=0.63632…Δv16​=0.63632…
v17​=1.56818…:Δv17​=0.49077…
f(v16​)=2.05895…4−2.05895…3+2.05895…2−2.05895…+1=12.42335…f′(v16​)=4⋅2.05895…3−3⋅2.05895…2+2⋅2.05895…−1=25.31395…v17​=1.56818…
Δv17​=∣1.56818…−2.05895…∣=0.49077…Δv17​=0.49077…
v18​=1.16736…:Δv18​=0.40081…
f(v17​)=1.56818…4−1.56818…3+1.56818…2−1.56818…+1=4.08216…f′(v17​)=4⋅1.56818…3−3⋅1.56818…2+2⋅1.56818…−1=10.18459…v18​=1.16736…
Δv18​=∣1.16736…−1.56818…∣=0.40081…Δv18​=0.40081…
v19​=0.76245…:Δv19​=0.40490…
f(v18​)=1.16736…4−1.16736…3+1.16736…2−1.16736…+1=1.46161…f′(v18​)=4⋅1.16736…3−3⋅1.16736…2+2⋅1.16736…−1=3.60974…v19​=0.76245…
Δv19​=∣0.76245…−1.16736…∣=0.40490…Δv19​=0.40490…
Non è possibile trovare soluzione
La soluzione èNessunasoluzioneperv∈R
Risolvi v−1=0:v=1
v−1=0
Spostare 1a destra dell'equazione
v−1=0
Aggiungi 1 ad entrambi i lativ−1+1=0+1
Semplificarev=1
v=1
Risolvi v4+v3+v2+v+1=0:Nessuna soluzione per v∈R
v4+v3+v2+v+1=0
Trova una soluzione per v4+v3+v2+v+1=0 utilizzando Newton-Raphson:Nessuna soluzione per v∈R
v4+v3+v2+v+1=0
Definizione di approssimazione di Newton-Raphson
f(v)=v4+v3+v2+v+1
Trova f′(v):4v3+3v2+2v+1
dvd​(v4+v3+v2+v+1)
Applica la regola della somma/differenza: (f±g)′=f′±g′=dvd​(v4)+dvd​(v3)+dvd​(v2)+dvdv​+dvd​(1)
dvd​(v4)=4v3
dvd​(v4)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=4v4−1
Semplificare=4v3
dvd​(v3)=3v2
dvd​(v3)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=3v3−1
Semplificare=3v2
dvd​(v2)=2v
dvd​(v2)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=2v2−1
Semplificare=2v
dvdv​=1
dvdv​
Applica la derivata comune: dvdv​=1=1
dvd​(1)=0
dvd​(1)
Derivata di una costante: dxd​(a)=0=0
=4v3+3v2+2v+1+0
Semplificare=4v3+3v2+2v+1
Sia v0​=−1Calcola vn+1​ fino a Deltavn+1​<0.000001
v1​=−0.5:Δv1​=0.5
f(v0​)=(−1)4+(−1)3+(−1)2+(−1)+1=1f′(v0​)=4(−1)3+3(−1)2+2(−1)+1=−2v1​=−0.5
Δv1​=∣−0.5−(−1)∣=0.5Δv1​=0.5
v2​=−3.25:Δv2​=2.75
f(v1​)=(−0.5)4+(−0.5)3+(−0.5)2+(−0.5)+1=0.6875f′(v1​)=4(−0.5)3+3(−0.5)2+2(−0.5)+1=0.25v2​=−3.25
Δv2​=∣−3.25−(−0.5)∣=2.75Δv2​=2.75
v3​=−2.48013…:Δv3​=0.76986…
f(v2​)=(−3.25)4+(−3.25)3+(−3.25)2+(−3.25)+1=85.55078…f′(v2​)=4(−3.25)3+3(−3.25)2+2(−3.25)+1=−111.125v3​=−2.48013…
Δv3​=∣−2.48013…−(−3.25)∣=0.76986…Δv3​=0.76986…
v4​=−1.89445…:Δv4​=0.58568…
f(v3​)=(−2.48013…)4+(−2.48013…)3+(−2.48013…)2+(−2.48013…)+1=27.25130…f′(v3​)=4(−2.48013…)3+3(−2.48013…)2+2(−2.48013…)+1=−46.52924…v4​=−1.89445…
Δv4​=∣−1.89445…−(−2.48013…)∣=0.58568…Δv4​=0.58568…
v5​=−1.43781…:Δv5​=0.45664…
f(v4​)=(−1.89445…)4+(−1.89445…)3+(−1.89445…)2+(−1.89445…)+1=8.77607…f′(v4​)=4(−1.89445…)3+3(−1.89445…)2+2(−1.89445…)+1=−19.21862…v5​=−1.43781…
Δv5​=∣−1.43781…−(−1.89445…)∣=0.45664…Δv5​=0.45664…
v6​=−1.05030…:Δv6​=0.38750…
f(v5​)=(−1.43781…)4+(−1.43781…)3+(−1.43781…)2+(−1.43781…)+1=2.93085…f′(v5​)=4(−1.43781…)3+3(−1.43781…)2+2(−1.43781…)+1=−7.56332…v6​=−1.05030…
Δv6​=∣−1.05030…−(−1.43781…)∣=0.38750…Δv6​=0.38750…
v7​=−0.59224…:Δv7​=0.45805…
f(v6​)=(−1.05030…)4+(−1.05030…)3+(−1.05030…)2+(−1.05030…)+1=1.11112…f′(v6​)=4(−1.05030…)3+3(−1.05030…)2+2(−1.05030…)+1=−2.42572…v7​=−0.59224…
Δv7​=∣−0.59224…−(−1.05030…)∣=0.45805…Δv7​=0.45805…
v8​=−18.88435…:Δv8​=18.29210…
f(v7​)=(−0.59224…)4+(−0.59224…)3+(−0.59224…)2+(−0.59224…)+1=0.67380…f′(v7​)=4(−0.59224…)3+3(−0.59224…)2+2(−0.59224…)+1=0.03683…v8​=−18.88435…
Δv8​=∣−18.88435…−(−0.59224…)∣=18.29210…Δv8​=18.29210…
v9​=−14.22188…:Δv9​=4.66247…
f(v8​)=(−18.88435…)4+(−18.88435…)3+(−18.88435…)2+(−18.88435…)+1=120781.11894…f′(v8​)=4(−18.88435…)3+3(−18.88435…)2+2(−18.88435…)+1=−25904.96293…v9​=−14.22188…
Δv9​=∣−14.22188…−(−18.88435…)∣=4.66247…Δv9​=4.66247…
v10​=−10.72385…:Δv10​=3.49802…
f(v9​)=(−14.22188…)4+(−14.22188…)3+(−14.22188…)2+(−14.22188…)+1=38222.36483…f′(v9​)=4(−14.22188…)3+3(−14.22188…)2+2(−14.22188…)+1=−10926.83534…v10​=−10.72385…
Δv10​=∣−10.72385…−(−14.22188…)∣=3.49802…Δv10​=3.49802…
v11​=−8.09884…:Δv11​=2.62501…
f(v10​)=(−10.72385…)4+(−10.72385…)3+(−10.72385…)2+(−10.72385…)+1=12097.26043…f′(v10​)=4(−10.72385…)3+3(−10.72385…)2+2(−10.72385…)+1=−4608.46147…v11​=−8.09884…
Δv11​=∣−8.09884…−(−10.72385…)∣=2.62501…Δv11​=2.62501…
v12​=−6.12820…:Δv12​=1.97063…
f(v11​)=(−8.09884…)4+(−8.09884…)3+(−8.09884…)2+(−8.09884…)+1=3829.49182…f′(v11​)=4(−8.09884…)3+3(−8.09884…)2+2(−8.09884…)+1=−1943.27695…v12​=−6.12820…
Δv12​=∣−6.12820…−(−8.09884…)∣=1.97063…Δv12​=1.97063…
v13​=−4.64785…:Δv13​=1.48034…
f(v12​)=(−6.12820…)4+(−6.12820…)3+(−6.12820…)2+(−6.12820…)+1=1212.65418…f′(v12​)=4(−6.12820…)3+3(−6.12820…)2+2(−6.12820…)+1=−819.16882…v13​=−4.64785…
Δv13​=∣−4.64785…−(−6.12820…)∣=1.48034…Δv13​=1.48034…
v14​=−3.53453…:Δv14​=1.11332…
f(v13​)=(−4.64785…)4+(−4.64785…)3+(−4.64785…)2+(−4.64785…)+1=384.22115…f′(v13​)=4(−4.64785…)3+3(−4.64785…)2+2(−4.64785…)+1=−345.11129…v14​=−3.53453…
Δv14​=∣−3.53453…−(−4.64785…)∣=1.11332…Δv14​=1.11332…
v15​=−2.69527…:Δv15​=0.83926…
f(v14​)=(−3.53453…)4+(−3.53453…)3+(−3.53453…)2+(−3.53453…)+1=121.87505…f′(v14​)=4(−3.53453…)3+3(−3.53453…)2+2(−3.53453…)+1=−145.21705…v15​=−2.69527…
Δv15​=∣−2.69527…−(−3.53453…)∣=0.83926…Δv15​=0.83926…
v16​=−2.05895…:Δv16​=0.63632…
f(v15​)=(−2.69527…)4+(−2.69527…)3+(−2.69527…)2+(−2.69527…)+1=38.76232…f′(v15​)=4(−2.69527…)3+3(−2.69527…)2+2(−2.69527…)+1=−60.91625…v16​=−2.05895…
Δv16​=∣−2.05895…−(−2.69527…)∣=0.63632…Δv16​=0.63632…
v17​=−1.56818…:Δv17​=0.49077…
f(v16​)=(−2.05895…)4+(−2.05895…)3+(−2.05895…)2+(−2.05895…)+1=12.42335…f′(v16​)=4(−2.05895…)3+3(−2.05895…)2+2(−2.05895…)+1=−25.31395…v17​=−1.56818…
Δv17​=∣−1.56818…−(−2.05895…)∣=0.49077…Δv17​=0.49077…
v18​=−1.16736…:Δv18​=0.40081…
f(v17​)=(−1.56818…)4+(−1.56818…)3+(−1.56818…)2+(−1.56818…)+1=4.08216…f′(v17​)=4(−1.56818…)3+3(−1.56818…)2+2(−1.56818…)+1=−10.18459…v18​=−1.16736…
Δv18​=∣−1.16736…−(−1.56818…)∣=0.40081…Δv18​=0.40081…
v19​=−0.76245…:Δv19​=0.40490…
f(v18​)=(−1.16736…)4+(−1.16736…)3+(−1.16736…)2+(−1.16736…)+1=1.46161…f′(v18​)=4(−1.16736…)3+3(−1.16736…)2+2(−1.16736…)+1=−3.60974…v19​=−0.76245…
Δv19​=∣−0.76245…−(−1.16736…)∣=0.40490…Δv19​=0.40490…
Non è possibile trovare soluzione
La soluzione èNessunasoluzioneperv∈R
Le soluzioni sonov=0,v=−1,v=1
v=0,v=−1,v=1
Sostituisci v=u2,risolvi per u
Risolvi u2=0:u=0
u2=0
Applicare la regola xn=0⇒x=0
u=0
Risolvi u2=−1:Nessuna soluzione per u∈R
u2=−1
x2 non può essere negativo per x∈RNessunasoluzioneperu∈R
Risolvi u2=1:u=1,u=−1
u2=1
Per x2=f(a) le soluzioni sono x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Applicare la regola 1​=1=1
−1​=−1
−1​
Applicare la regola 1​=1=−1
u=1,u=−1
Le soluzioni sono
u=0,u=1,u=−1
Sostituire indietro u=tan(x)tan(x)=0,tan(x)=1,tan(x)=−1
tan(x)=0,tan(x)=1,tan(x)=−1
tan(x)=0:x=πn
tan(x)=0
Soluzioni generali per tan(x)=0
tan(x) periodicità tabella con πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Risolvi x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)=1:x=4π​+πn
tan(x)=1
Soluzioni generali per tan(x)=1
tan(x) periodicità tabella con πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
tan(x)=−1:x=43π​+πn
tan(x)=−1
Soluzioni generali per tan(x)=−1
tan(x) periodicità tabella con πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Combinare tutte le soluzionix=πn,x=4π​+πn,x=43π​+πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

tan^4(x)+tan^2(x)=tan(x)tan4(x)+tan2(x)=tan(x)sin^4(x)+sin^2(x)=sin^6(x)sin4(x)+sin2(x)=sin6(x)cos(a)=(-11)/(14)cos(a)=14−11​solvefor x,sin(x/x)=0.7solveforx,sin(xx​)=0.75cos^2(x)+sin^2(x)=45cos2(x)+sin2(x)=4
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024