解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

solvefor x,f=2cos(3x^2-1)entoncesf

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

解く x,f=2cos(3x2−1)entoncesf

解

x=3arccos(2e2cn2tos1​)+2πk+1​​,x=−3arccos(2e2cn2tos1​)+2πk+1​​,x=3−arccos(2e2cn2tos1​)+2πk+1​​,x=−3−arccos(2e2cn2tos1​)+2πk+1​​
解答ステップ
f=2cos(3x2−1)entoncesf
辺を交換する2cos(3x2−1)entoncesf=f
以下で両辺を割る2entoncesf;c=0
2cos(3x2−1)entoncesf=f
以下で両辺を割る2entoncesf;c=02entoncesf2cos(3x2−1)entoncesf​=2entoncesff​;c=0
簡素化
2entoncesf2cos(3x2−1)entoncesf​=2entoncesff​
簡素化 2entoncesf2cos(3x2−1)entoncesf​:cos(3x2−1)
2entoncesf2cos(3x2−1)entoncesf​
2cos(3x2−1)entoncesf=2e2cftosn2cos(3x2−1)
2cos(3x2−1)entoncesf
指数の規則を適用する: ab⋅ac=ab+cee=e1+1=2cos(3x2−1)ntonce1+1sf
数を足す:1+1=2=2cos(3x2−1)ntonce2sf
指数の規則を適用する: ab⋅ac=ab+cnn=n1+1=2cos(3x2−1)ton1+1ce2sf
数を足す:1+1=2=2cos(3x2−1)ton2ce2sf
=2eecftosnn2e2cftosn2cos(3x2−1)​
2entoncesf=2e2cftosn2
2entoncesf
指数の規則を適用する: ab⋅ac=ab+cee=e1+1=2ntonce1+1sf
数を足す:1+1=2=2ntonce2sf
指数の規則を適用する: ab⋅ac=ab+cnn=n1+1=2ton1+1ce2sf
数を足す:1+1=2=2ton2ce2sf
=2e2cftosn22e2cftosn2cos(3x2−1)​
数を割る:22​=1=e2cftosn2e2cftosn2cos(3x2−1)​
共通因数を約分する:t=e2cfosn2e2cfosn2cos(3x2−1)​
共通因数を約分する:o=e2cfsn2e2cfsn2cos(3x2−1)​
共通因数を約分する:n2=e2cfse2cfscos(3x2−1)​
共通因数を約分する:c=e2fse2fscos(3x2−1)​
共通因数を約分する:e2=fsfscos(3x2−1)​
共通因数を約分する:s=ffcos(3x2−1)​
共通因数を約分する:f=cos(3x2−1)
簡素化 2entoncesff​:2e2ctosn21​
2entoncesff​
2entoncesf=2e2cftosn2
2entoncesf
指数の規則を適用する: ab⋅ac=ab+cee=e1+1=2ntonce1+1sf
数を足す:1+1=2=2ntonce2sf
指数の規則を適用する: ab⋅ac=ab+cnn=n1+1=2ton1+1ce2sf
数を足す:1+1=2=2ton2ce2sf
=2e2cftosn2f​
共通因数を約分する:f=2e2ctosn21​
cos(3x2−1)=2e2ctosn21​;c=0
cos(3x2−1)=2e2ctosn21​;c=0
cos(3x2−1)=2e2ctosn21​;c=0
三角関数の逆数プロパティを適用する
cos(3x2−1)=2e2ctosn21​
以下の一般解 cos(3x2−1)=2e2ctosn21​cos(x)=a⇒x=arccos(a)+2πk,x=−arccos(a)+2πk3x2−1=arccos(2e2ctosn21​)+2πk,3x2−1=−arccos(2e2ctosn21​)+2πk
3x2−1=arccos(2e2ctosn21​)+2πk,3x2−1=−arccos(2e2ctosn21​)+2πk
解く 3x2−1=arccos(2e2ctosn21​)+2πk:x=3arccos(2e2cn2tos1​)+2πk+1​​,x=−3arccos(2e2cn2tos1​)+2πk+1​​
3x2−1=arccos(2e2ctosn21​)+2πk
1を右側に移動します
3x2−1=arccos(2e2ctosn21​)+2πk
両辺に1を足す3x2−1+1=arccos(2e2ctosn21​)+2πk+1
簡素化3x2=arccos(2e2ctosn21​)+2πk+1
3x2=arccos(2e2ctosn21​)+2πk+1
以下で両辺を割る3
3x2=arccos(2e2ctosn21​)+2πk+1
以下で両辺を割る333x2​=3arccos(2e2ctosn21​)​+32πk​+31​
簡素化x2=3arccos(2e2ctosn21​)​+32πk​+31​
x2=3arccos(2e2ctosn21​)​+32πk​+31​
x2=f(a) の場合, 解は x=f(a)​,−f(a)​
x=3arccos(2e2ctosn21​)​+32πk​+31​​,x=−3arccos(2e2ctosn21​)​+32πk​+31​​
簡素化 3arccos(2e2ctosn21​)​+32πk​+31​​:3arccos(2e2cn2tos1​)+2πk+1​​
3arccos(2e2ctosn21​)​+32πk​+31​​
分数を組み合わせる 3arccos(2e2cn2tos1​)​+32πk​+31​:3arccos(2e2cn2tos1​)+2πk+1​
規則を適用 ca​±cb​=ca±b​=3arccos(2e2cn2tos1​)+2πk+1​
=3arccos(2e2ctosn21​)+2πk+1​​
=3arccos(2e2cn2tos1​)+2πk+1​​
簡素化 −3arccos(2e2ctosn21​)​+32πk​+31​​:−3arccos(2e2cn2tos1​)+2πk+1​​
−3arccos(2e2ctosn21​)​+32πk​+31​​
分数を組み合わせる 3arccos(2e2cn2tos1​)​+32πk​+31​:3arccos(2e2cn2tos1​)+2πk+1​
規則を適用 ca​±cb​=ca±b​=3arccos(2e2cn2tos1​)+2πk+1​
=−32πk+arccos(2e2cn2tos1​)+1​​
=−3arccos(2e2cn2tos1​)+2πk+1​​
x=3arccos(2e2cn2tos1​)+2πk+1​​,x=−3arccos(2e2cn2tos1​)+2πk+1​​
解く 3x2−1=−arccos(2e2ctosn21​)+2πk:x=3−arccos(2e2cn2tos1​)+2πk+1​​,x=−3−arccos(2e2cn2tos1​)+2πk+1​​
3x2−1=−arccos(2e2ctosn21​)+2πk
1を右側に移動します
3x2−1=−arccos(2e2ctosn21​)+2πk
両辺に1を足す3x2−1+1=−arccos(2e2ctosn21​)+2πk+1
簡素化3x2=−arccos(2e2ctosn21​)+2πk+1
3x2=−arccos(2e2ctosn21​)+2πk+1
以下で両辺を割る3
3x2=−arccos(2e2ctosn21​)+2πk+1
以下で両辺を割る333x2​=−3arccos(2e2ctosn21​)​+32πk​+31​
簡素化x2=−3arccos(2e2ctosn21​)​+32πk​+31​
x2=−3arccos(2e2ctosn21​)​+32πk​+31​
x2=f(a) の場合, 解は x=f(a)​,−f(a)​
x=−3arccos(2e2ctosn21​)​+32πk​+31​​,x=−−3arccos(2e2ctosn21​)​+32πk​+31​​
簡素化 −3arccos(2e2ctosn21​)​+32πk​+31​​:3−arccos(2e2cn2tos1​)+2πk+1​​
−3arccos(2e2ctosn21​)​+32πk​+31​​
分数を組み合わせる −3arccos(2e2cn2tos1​)​+32πk​+31​:3−arccos(2e2cn2tos1​)+2πk+1​
規則を適用 ca​±cb​=ca±b​=3−arccos(2e2cn2tos1​)+2πk+1​
=3−arccos(2e2ctosn21​)+2πk+1​​
=3−arccos(2e2cn2tos1​)+2πk+1​​
簡素化 −−3arccos(2e2ctosn21​)​+32πk​+31​​:−3−arccos(2e2cn2tos1​)+2πk+1​​
−−3arccos(2e2ctosn21​)​+32πk​+31​​
分数を組み合わせる −3arccos(2e2cn2tos1​)​+32πk​+31​:3−arccos(2e2cn2tos1​)+2πk+1​
規則を適用 ca​±cb​=ca±b​=3−arccos(2e2cn2tos1​)+2πk+1​
=−32πk+1−arccos(2e2cn2tos1​)​​
=−3−arccos(2e2cn2tos1​)+2πk+1​​
x=3−arccos(2e2cn2tos1​)+2πk+1​​,x=−3−arccos(2e2cn2tos1​)+2πk+1​​
x=3arccos(2e2cn2tos1​)+2πk+1​​,x=−3arccos(2e2cn2tos1​)+2πk+1​​,x=3−arccos(2e2cn2tos1​)+2πk+1​​,x=−3−arccos(2e2cn2tos1​)+2πk+1​​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

tan(a)= 5/8tan(a)=85​solvefor x,z=tan(x/2)solveforx,z=tan(2x​)tan(x/2)=sqrt(3),0<= x<= 2pitan(2x​)=3​,0≤x≤2π0=4sin(2θ)0=4sin(2θ)tan(θ)+3=0tan(θ)+3=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024