slope of 1,62,113,164,21
|
slope\:1,62,113,164,21
|
inverse of x^2-2x+3
|
inverse\:x^{2}-2x+3
|
domain of f(x)=sqrt(x^2-5x)
|
domain\:f(x)=\sqrt{x^{2}-5x}
|
monotone intervals f(x)=3+4x^2*e^{-x}
|
monotone\:intervals\:f(x)=3+4x^{2}\cdot\:e^{-x}
|
periodicity of-3sin(2x+(pi)/2)
|
periodicity\:-3\sin(2x+\frac{\pi}{2})
|
domain of f(x)=(y^2+1)/(y^2-2y)
|
domain\:f(x)=\frac{y^{2}+1}{y^{2}-2y}
|
line m
|
line\:m
|
critical points of 3x^2-2x+1
|
critical\:points\:3x^{2}-2x+1
|
periodicity of 5.75cos(12t)+7.88
|
periodicity\:5.75\cos(12t)+7.88
|
slope intercept of 2x-5y-2=0,(1,-2)
|
slope\:intercept\:2x-5y-2=0,(1,-2)
|
distance (2.07,22.54)(-8.68,-22.32)
|
distance\:(2.07,22.54)(-8.68,-22.32)
|
domain of f(x)=(x-4)/(3x-x^2)
|
domain\:f(x)=\frac{x-4}{3x-x^{2}}
|
domain of f(x)=x^2-(y-3)^2=16
|
domain\:f(x)=x^{2}-(y-3)^{2}=16
|
global extreme points of 3x-2
|
global\:extreme\:points\:3x-2
|
intercepts of f(x)=\sqrt[3]{-2x}
|
intercepts\:f(x)=\sqrt[3]{-2x}
|
slope intercept of 12x+6y=27
|
slope\:intercept\:12x+6y=27
|
inverse of f(x)=(x-7)/(x+6)
|
inverse\:f(x)=\frac{x-7}{x+6}
|
inverse of f(x)=log_{b}(x)
|
inverse\:f(x)=\log_{b}(x)
|
extreme points of f(x)=2x^3+21x^2+36x
|
extreme\:points\:f(x)=2x^{3}+21x^{2}+36x
|
inverse of ((x-10)^3)/(10)+5
|
inverse\:\frac{(x-10)^{3}}{10}+5
|
domain of f(x)=(2x)/(x-1)
|
domain\:f(x)=\frac{2x}{x-1}
|
domain of f(x)=ln(2+sqrt(3+x^2))
|
domain\:f(x)=\ln(2+\sqrt{3+x^{2}})
|
slope intercept of 2y+x-6=0
|
slope\:intercept\:2y+x-6=0
|
domain of f(x)=sqrt(-3x-1)
|
domain\:f(x)=\sqrt{-3x-1}
|
perpendicular-1/2 x+6
|
perpendicular\:-\frac{1}{2}x+6
|
domain of 2^{x+1}
|
domain\:2^{x+1}
|
range of f(x)=sqrt(x)-8
|
range\:f(x)=\sqrt{x}-8
|
domain of (x^2+2x)/(x^3-2x^2-8x)
|
domain\:\frac{x^{2}+2x}{x^{3}-2x^{2}-8x}
|
domain of 1/(sqrt(x-6))
|
domain\:\frac{1}{\sqrt{x-6}}
|
intercepts of x^2-x-6
|
intercepts\:x^{2}-x-6
|
range of f(x)= x/(x-1)
|
range\:f(x)=\frac{x}{x-1}
|
inverse of f(x)=sqrt(2x+3)-1
|
inverse\:f(x)=\sqrt{2x+3}-1
|
domain of f(x)=(3,6)(5,10)(7,14)
|
domain\:f(x)=(3,6)(5,10)(7,14)
|
inverse of f(x)=10x^3-5
|
inverse\:f(x)=10x^{3}-5
|
inverse of y=500(0.04-x^2)
|
inverse\:y=500(0.04-x^{2})
|
range of 1/(4-x)
|
range\:\frac{1}{4-x}
|
inverse of f(x)=(2x)/3+5
|
inverse\:f(x)=\frac{2x}{3}+5
|
domain of f(x)= 1/(sqrt(2x+3))
|
domain\:f(x)=\frac{1}{\sqrt{2x+3}}
|
critical points of xe^{1/x}
|
critical\:points\:xe^{\frac{1}{x}}
|
range of f(x)=x^2-4x-12
|
range\:f(x)=x^{2}-4x-12
|
domain of f(x)=cos(t)
|
domain\:f(x)=\cos(t)
|
extreme points of f(x)=4x^3-3x^2-60x+17
|
extreme\:points\:f(x)=4x^{3}-3x^{2}-60x+17
|
inverse of 1/(x^2+3)
|
inverse\:\frac{1}{x^{2}+3}
|
inverse of f(x)=2x^4
|
inverse\:f(x)=2x^{4}
|
domain of f(x)=xsqrt(x+3)
|
domain\:f(x)=x\sqrt{x+3}
|
inverse of 1/(x-3)
|
inverse\:\frac{1}{x-3}
|
inverse of 2/(2-x)
|
inverse\:\frac{2}{2-x}
|
line y-2=1(x-3)
|
line\:y-2=1(x-3)
|
range of f(5)=-2x+7
|
range\:f(5)=-2x+7
|
extreme points of f(x)=-x^3-3x+3
|
extreme\:points\:f(x)=-x^{3}-3x+3
|
symmetry y=-x^2+16x-94
|
symmetry\:y=-x^{2}+16x-94
|
inverse of (4x)/(7x-1)
|
inverse\:\frac{4x}{7x-1}
|
intercepts of (-4)/(2x-5)
|
intercepts\:\frac{-4}{2x-5}
|
asymptotes of f(x)=(x^2-x)/(x^3-4x)
|
asymptotes\:f(x)=\frac{x^{2}-x}{x^{3}-4x}
|
asymptotes of f(x)=(4+9e^x)/(3e^x+2)
|
asymptotes\:f(x)=\frac{4+9e^{x}}{3e^{x}+2}
|
domain of (x+2)^2+1
|
domain\:(x+2)^{2}+1
|
distance (-7/2 , 1/2)\land (-9/2 ,-1/2)
|
distance\:(-\frac{7}{2},\frac{1}{2})\land\:(-\frac{9}{2},-\frac{1}{2})
|
asymptotes of 3*2^{x-1}+4
|
asymptotes\:3\cdot\:2^{x-1}+4
|
monotone intervals y= 1/(x^2)
|
monotone\:intervals\:y=\frac{1}{x^{2}}
|
domain of f(x)=-5x+5
|
domain\:f(x)=-5x+5
|
domain of f(x)=sqrt(8x)
|
domain\:f(x)=\sqrt{8x}
|
asymptotes of f(x)=(x-5)/(3x(x+1))
|
asymptotes\:f(x)=\frac{x-5}{3x(x+1)}
|
domain of f(x)=x^2-10x+30
|
domain\:f(x)=x^{2}-10x+30
|
critical points of ln(x^2+4)
|
critical\:points\:\ln(x^{2}+4)
|
parity f(x)=e^{x^2}ln(sec(tan(x)))
|
parity\:f(x)=e^{x^{2}}\ln(\sec(\tan(x)))
|
inverse of-\sqrt[3]{(2x+4)/3}
|
inverse\:-\sqrt[3]{\frac{2x+4}{3}}
|
domain of sqrt(x+1)-3
|
domain\:\sqrt{x+1}-3
|
inverse of f(x)=(x-3)/(x-4)
|
inverse\:f(x)=\frac{x-3}{x-4}
|
asymptotes of f(x)=((x^2+1))/(7x-4x^2)
|
asymptotes\:f(x)=\frac{(x^{2}+1)}{7x-4x^{2}}
|
inverse of f(x)= 1/4 x^3-5
|
inverse\:f(x)=\frac{1}{4}x^{3}-5
|
amplitude of f(x)=-2cos(3x)
|
amplitude\:f(x)=-2\cos(3x)
|
asymptotes of f(x)=(2x+3)/(x+2)
|
asymptotes\:f(x)=\frac{2x+3}{x+2}
|
inflection points of log_{10}(x+4)
|
inflection\:points\:\log_{10}(x+4)
|
shift-4sin(x+(pi)/3)
|
shift\:-4\sin(x+\frac{\pi}{3})
|
midpoint (m,p)(0,0)
|
midpoint\:(m,p)(0,0)
|
inverse of y=6^x+2
|
inverse\:y=6^{x}+2
|
inverse of f(x)=(x-1)/(1+3x)
|
inverse\:f(x)=\frac{x-1}{1+3x}
|
inverse of f(2)= 1/t+1
|
inverse\:f(2)=\frac{1}{t}+1
|
domain of f(x)= 1/(-x^2+3x)
|
domain\:f(x)=\frac{1}{-x^{2}+3x}
|
range of 2|x|
|
range\:2|x|
|
inverse of f(x)=3x+4
|
inverse\:f(x)=3x+4
|
extreme points of f(x)=4x^2-8
|
extreme\:points\:f(x)=4x^{2}-8
|
extreme points of f(x)=e^{1/x}*(x+2)
|
extreme\:points\:f(x)=e^{1/x}\cdot\:(x+2)
|
line y= 1/2 x
|
line\:y=\frac{1}{2}x
|
inflection points of x^5-5x
|
inflection\:points\:x^{5}-5x
|
inverse of f(x)=100(1-t/(40))^2
|
inverse\:f(x)=100(1-\frac{t}{40})^{2}
|
inverse of y=4log_{x}(3)
|
inverse\:y=4\log_{x}(3)
|
inverse of f(x)=(x-3)/(9x+4)
|
inverse\:f(x)=\frac{x-3}{9x+4}
|
asymptotes of f(x)=(x^2)/(x^2+1)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+1}
|
distance (3,1)(-1,-1)
|
distance\:(3,1)(-1,-1)
|
inverse of f(x)=8x^5
|
inverse\:f(x)=8x^{5}
|
inverse of f(x)=-4/5 x-8
|
inverse\:f(x)=-\frac{4}{5}x-8
|
asymptotes of f(x)=(-5x-5)/(x^2-1)
|
asymptotes\:f(x)=\frac{-5x-5}{x^{2}-1}
|
intercepts of f(x)=x^2-100sqrt(x)+6
|
intercepts\:f(x)=x^{2}-100\sqrt{x}+6
|
critical points of f(x)=-x^2+4x-1
|
critical\:points\:f(x)=-x^{2}+4x-1
|
intercepts of f(x)=18x-9x^2-9
|
intercepts\:f(x)=18x-9x^{2}-9
|
midpoint (-2,3)(6,7)
|
midpoint\:(-2,3)(6,7)
|
domain of f(x)=ln((x+2)/(x-1))
|
domain\:f(x)=\ln(\frac{x+2}{x-1})
|
extreme points of 19x^4-114x^2
|
extreme\:points\:19x^{4}-114x^{2}
|
(x^2)
|
(x^{2})
|