inverse of f(x)=((x+7))/(x-6)
|
inverse\:f(x)=\frac{(x+7)}{x-6}
|
range of f(x)=5+sqrt(4-x)
|
range\:f(x)=5+\sqrt{4-x}
|
slope of y= x/5+16
|
slope\:y=\frac{x}{5}+16
|
inverse of f(x)=4+\sqrt[3]{x}
|
inverse\:f(x)=4+\sqrt[3]{x}
|
intercepts of y=-4x+3
|
intercepts\:y=-4x+3
|
inverse of f(x)=-sqrt(x)+2
|
inverse\:f(x)=-\sqrt{x}+2
|
domain of f(x)=sqrt(x^2-25)
|
domain\:f(x)=\sqrt{x^{2}-25}
|
domain of sqrt(x^2-2x-3)
|
domain\:\sqrt{x^{2}-2x-3}
|
slope intercept of y+5=-5(x-5)
|
slope\:intercept\:y+5=-5(x-5)
|
perpendicular-4x+y=19,\at (-4,2)
|
perpendicular\:-4x+y=19,\at\:(-4,2)
|
domain of f(x)=(4x)/(sqrt(x+9))
|
domain\:f(x)=\frac{4x}{\sqrt{x+9}}
|
asymptotes of (4x^2)/(x^2-4x+4)
|
asymptotes\:\frac{4x^{2}}{x^{2}-4x+4}
|
range of \sqrt[3]{x}+1
|
range\:\sqrt[3]{x}+1
|
domain of (4x+3)/(x(x+3))
|
domain\:\frac{4x+3}{x(x+3)}
|
inverse of sqrt(x-5)+3
|
inverse\:\sqrt{x-5}+3
|
inverse of x^3+6
|
inverse\:x^{3}+6
|
inflection points of f(x)=ln(x^2+1)
|
inflection\:points\:f(x)=\ln(x^{2}+1)
|
monotone intervals e^{1/x}
|
monotone\:intervals\:e^{\frac{1}{x}}
|
inverse of f(x)=18500(0.09-r^2)
|
inverse\:f(x)=18500(0.09-r^{2})
|
slope of-x+2y=8
|
slope\:-x+2y=8
|
line (6,7),(2,3)
|
line\:(6,7),(2,3)
|
extreme points of f(x)=x^8e^x-4
|
extreme\:points\:f(x)=x^{8}e^{x}-4
|
line (0,0),(4,2)
|
line\:(0,0),(4,2)
|
inverse of f(x)=27x^3
|
inverse\:f(x)=27x^{3}
|
1/(x+1)
|
\frac{1}{x+1}
|
intercepts of x^2-2x+4
|
intercepts\:x^{2}-2x+4
|
intercepts of f(x)=x^2+8x-1
|
intercepts\:f(x)=x^{2}+8x-1
|
inverse of f(x)=(13-x)/sqrt(x^2-1)
|
inverse\:f(x)=(13-x)/\sqrt{x^{2}-1}
|
extreme points of f(x)=x^2+2/x
|
extreme\:points\:f(x)=x^{2}+\frac{2}{x}
|
range of f(x)=sqrt(x^3-4x)
|
range\:f(x)=\sqrt{x^{3}-4x}
|
inverse of y=4-x^2
|
inverse\:y=4-x^{2}
|
domain of (x+9)/(x^2-1)
|
domain\:\frac{x+9}{x^{2}-1}
|
extreme points of f(x)=2cos(x)
|
extreme\:points\:f(x)=2\cos(x)
|
domain of g(x)=sqrt(7-x)
|
domain\:g(x)=\sqrt{7-x}
|
inverse of f(x)=-x^2+1
|
inverse\:f(x)=-x^{2}+1
|
domain of f(x)=2x-3
|
domain\:f(x)=2x-3
|
inverse of sqrt((3z+2))
|
inverse\:\sqrt{(3z+2)}
|
asymptotes of f(x)=-3/(x-4)
|
asymptotes\:f(x)=-\frac{3}{x-4}
|
domain of f(x)=(x^2)/(sqrt(3-x))
|
domain\:f(x)=\frac{x^{2}}{\sqrt{3-x}}
|
domain of sqrt(x+1)
|
domain\:\sqrt{x+1}
|
symmetry Y=(x-2)^2+3
|
symmetry\:Y=(x-2)^{2}+3
|
inverse of f(x)=(8x+9)/(x+8)
|
inverse\:f(x)=\frac{8x+9}{x+8}
|
inverse of f(x)=(5-x)^2
|
inverse\:f(x)=(5-x)^{2}
|
slope of (m+2)x+5y=m
|
slope\:(m+2)x+5y=m
|
domain of f(x)= 1/(y^2-y)
|
domain\:f(x)=\frac{1}{y^{2}-y}
|
domain of f(x)=sqrt(-5x^2+40x+45)
|
domain\:f(x)=\sqrt{-5x^{2}+40x+45}
|
domain of (sqrt(x+2))/(6x^2+x-2)
|
domain\:\frac{\sqrt{x+2}}{6x^{2}+x-2}
|
asymptotes of x/(5x^2+4x+1)
|
asymptotes\:\frac{x}{5x^{2}+4x+1}
|
domain of f(x)= 7/(2x-10)
|
domain\:f(x)=\frac{7}{2x-10}
|
intercepts of f(x)=(x-1)/((x+3)(x-2))
|
intercepts\:f(x)=\frac{x-1}{(x+3)(x-2)}
|
symmetry x^3+2x
|
symmetry\:x^{3}+2x
|
inverse of f(x)=\sqrt[3]{x+1}-7
|
inverse\:f(x)=\sqrt[3]{x+1}-7
|
parallel 5x-3y=-15
|
parallel\:5x-3y=-15
|
domain of f(y)=-2x-1
|
domain\:f(y)=-2x-1
|
parity s(t)=(8t)/(sin(t))
|
parity\:s(t)=\frac{8t}{\sin(t)}
|
intercept f(x)=x^2
|
intercept\:f(x)=x^{2}
|
inverse of f(x)=(9-2x)/5
|
inverse\:f(x)=\frac{9-2x}{5}
|
parity f(x)=1+csc(x)
|
parity\:f(x)=1+\csc(x)
|
inverse of f(x)=(n+4)/2
|
inverse\:f(x)=\frac{n+4}{2}
|
domain of ln(x)+ln(2-x)
|
domain\:\ln(x)+\ln(2-x)
|
inverse of f(x)=(x+3)/(x+2)
|
inverse\:f(x)=\frac{x+3}{x+2}
|
distance (0,6)(-4,0)
|
distance\:(0,6)(-4,0)
|
asymptotes of f(x)=-4/(x^2+x-2)
|
asymptotes\:f(x)=-\frac{4}{x^{2}+x-2}
|
inverse of (x-3)/(x+2)
|
inverse\:\frac{x-3}{x+2}
|
range of f(x)=x^4+6x^3-x-6
|
range\:f(x)=x^{4}+6x^{3}-x-6
|
range of f(x)=5+3x^2
|
range\:f(x)=5+3x^{2}
|
inflection points of x^3-18x^2+81x+13
|
inflection\:points\:x^{3}-18x^{2}+81x+13
|
parity f(x)=2x^5
|
parity\:f(x)=2x^{5}
|
extreme points of f(x)=x^4+4x^3-9
|
extreme\:points\:f(x)=x^{4}+4x^{3}-9
|
range of sqrt(x)+8
|
range\:\sqrt{x}+8
|
slope of m=-3(-1,4)
|
slope\:m=-3(-1,4)
|
slope of 2y+3=0
|
slope\:2y+3=0
|
intercepts of (x-2)^2+6
|
intercepts\:(x-2)^{2}+6
|
domain of (5-t)^{1/6}
|
domain\:(5-t)^{\frac{1}{6}}
|
extreme points of f(x)=x^{4/5}-8
|
extreme\:points\:f(x)=x^{\frac{4}{5}}-8
|
asymptotes of f(x)=19(0.5)^x
|
asymptotes\:f(x)=19(0.5)^{x}
|
domain of f(x)=18x-3x^2
|
domain\:f(x)=18x-3x^{2}
|
domain of (2x+9)/(9x-2)*(8x)/(9x-2)
|
domain\:\frac{2x+9}{9x-2}\cdot\:\frac{8x}{9x-2}
|
extreme points of f(x)=\sqrt[3]{x+1}
|
extreme\:points\:f(x)=\sqrt[3]{x+1}
|
domain of (x-2)^2+1
|
domain\:(x-2)^{2}+1
|
domain of (x^2-16)/(8x^2)
|
domain\:\frac{x^{2}-16}{8x^{2}}
|
inverse of log_{10}(-2x)
|
inverse\:\log_{10}(-2x)
|
domain of (3x-24)^4
|
domain\:(3x-24)^{4}
|
domain of f(x)= 3/(x^2-3)
|
domain\:f(x)=\frac{3}{x^{2}-3}
|
distance (0,3)(2,3)
|
distance\:(0,3)(2,3)
|
x^2-6x+13
|
x^{2}-6x+13
|
domain of f(x)=sqrt(x-1)
|
domain\:f(x)=\sqrt{x-1}
|
domain of f(x)=(5+x)/(x^2-49)
|
domain\:f(x)=\frac{5+x}{x^{2}-49}
|
critical points of e^{ln(x)+1}-5cos(3x)
|
critical\:points\:e^{\ln(x)+1}-5\cos(3x)
|
inverse of f(x)=(2x)/((x-3))
|
inverse\:f(x)=\frac{2x}{(x-3)}
|
domain of f(x)=(ln(x))/(ln(3))
|
domain\:f(x)=\frac{\ln(x)}{\ln(3)}
|
asymptotes of f(x)= x/(x^2-4x-12)
|
asymptotes\:f(x)=\frac{x}{x^{2}-4x-12}
|
domain of (2x)/(x-5)
|
domain\:\frac{2x}{x-5}
|
extreme points of f(x)=6x^2-6x
|
extreme\:points\:f(x)=6x^{2}-6x
|
line 2x+5y=10
|
line\:2x+5y=10
|
slope of x=12y
|
slope\:x=12y
|
inverse of (e^x)/(e-1)
|
inverse\:\frac{e^{x}}{e-1}
|
range of 6/(x^2-16)
|
range\:\frac{6}{x^{2}-16}
|
domain of h(x)=3x^2
|
domain\:h(x)=3x^{2}
|
slope intercept of-3x-y=-2
|
slope\:intercept\:-3x-y=-2
|