range of f(x)=|x-3|
|
range\:f(x)=|x-3|
|
inflection points of \sqrt[3]{x+2}
|
inflection\:points\:\sqrt[3]{x+2}
|
amplitude of-5cos(1/2 x)
|
amplitude\:-5\cos(\frac{1}{2}x)
|
intercepts of f(x)=-3x+2
|
intercepts\:f(x)=-3x+2
|
extreme points of f(x)=x^2+4x+4
|
extreme\:points\:f(x)=x^{2}+4x+4
|
inverse of f(x)=(19-t)^{1/4}
|
inverse\:f(x)=(19-t)^{1/4}
|
inverse of f(x)= x/(x^2-9)
|
inverse\:f(x)=\frac{x}{x^{2}-9}
|
inverse of f(x)=((x+7))/(sqrt(x))
|
inverse\:f(x)=\frac{(x+7)}{\sqrt{x}}
|
inverse of 3log_{10}(x-1)
|
inverse\:3\log_{10}(x-1)
|
slope of 2(3,10)
|
slope\:2(3,10)
|
inverse of f(x)=\sqrt[3]{x}+7
|
inverse\:f(x)=\sqrt[3]{x}+7
|
extreme points of e^{-x}
|
extreme\:points\:e^{-x}
|
asymptotes of f(x)=(3x^2-4x+5)/(x-3)
|
asymptotes\:f(x)=\frac{3x^{2}-4x+5}{x-3}
|
domain of f(x)=sqrt(18-x)
|
domain\:f(x)=\sqrt{18-x}
|
asymptotes of f(x)=(x^2+9)/(3x^2-14x-5)
|
asymptotes\:f(x)=\frac{x^{2}+9}{3x^{2}-14x-5}
|
distance (2,5)(9,8)
|
distance\:(2,5)(9,8)
|
range of f(x)=sqrt(x+1)
|
range\:f(x)=\sqrt{x+1}
|
inverse of f(x)=ln(x+5)
|
inverse\:f(x)=\ln(x+5)
|
range of f(x)=3x-4
|
range\:f(x)=3x-4
|
domain of f(x)=sqrt(3-x)+4
|
domain\:f(x)=\sqrt{3-x}+4
|
range of f(x)=x^{2/3}-2
|
range\:f(x)=x^{\frac{2}{3}}-2
|
domain of f(x)=sqrt(1-\sqrt{1-x^2)}
|
domain\:f(x)=\sqrt{1-\sqrt{1-x^{2}}}
|
inverse of f(x)=(8-x)/2
|
inverse\:f(x)=\frac{8-x}{2}
|
domain of f(x)=sqrt(6-x)
|
domain\:f(x)=\sqrt{6-x}
|
midpoint (8,5)(5,3)
|
midpoint\:(8,5)(5,3)
|
range of f(x)=3x
|
range\:f(x)=3x
|
domain of (x^2-9)/(x-5)
|
domain\:\frac{x^{2}-9}{x-5}
|
asymptotes of f(x)=xe^{2/x}+1
|
asymptotes\:f(x)=xe^{\frac{2}{x}}+1
|
inverse of f(x)=1-e^{8-x}
|
inverse\:f(x)=1-e^{8-x}
|
parallel ,y-3x+10=0
|
parallel\:,y-3x+10=0
|
inverse of f(x)=(-1)/(5+4x)
|
inverse\:f(x)=\frac{-1}{5+4x}
|
range of f(x)=x^2-6x-7
|
range\:f(x)=x^{2}-6x-7
|
domain of x^3-10x^2-9x+89
|
domain\:x^{3}-10x^{2}-9x+89
|
slope intercept of 4x+2y=6
|
slope\:intercept\:4x+2y=6
|
asymptotes of f(x)= 1/x-2
|
asymptotes\:f(x)=\frac{1}{x}-2
|
asymptotes of (x^2+x-2)/(4x^2-4x)
|
asymptotes\:\frac{x^{2}+x-2}{4x^{2}-4x}
|
inverse of h(x)=x^{(2)}-4x+9
|
inverse\:h(x)=x^{(2)}-4x+9
|
domain of f(x)=x^2-4x
|
domain\:f(x)=x^{2}-4x
|
domain of f(x)=7^x
|
domain\:f(x)=7^{x}
|
domain of f(x)=(4x)/(x^2-25)
|
domain\:f(x)=\frac{4x}{x^{2}-25}
|
extreme points of ln(x-1)*(x-1)
|
extreme\:points\:\ln(x-1)\cdot\:(x-1)
|
extreme points of f(x)=x^3+3/2 x^2-5x-2
|
extreme\:points\:f(x)=x^{3}+\frac{3}{2}x^{2}-5x-2
|
range of f(x)=(x^2+2)/(x^2-4)
|
range\:f(x)=\frac{x^{2}+2}{x^{2}-4}
|
critical points of 0.0135x^2-1.096x+41.3
|
critical\:points\:0.0135x^{2}-1.096x+41.3
|
intercepts of y=6x-7
|
intercepts\:y=6x-7
|
range of (4x)/(x-1)
|
range\:\frac{4x}{x-1}
|
domain of f(x)=4x-2
|
domain\:f(x)=4x-2
|
intercepts of-x^2+5x-7
|
intercepts\:-x^{2}+5x-7
|
slope intercept of Y= 2/3 x+3
|
slope\:intercept\:Y=\frac{2}{3}x+3
|
domain of-9/(2tsqrt(t))
|
domain\:-\frac{9}{2t\sqrt{t}}
|
asymptotes of f(x)=(x^3-1)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{x^{3}-1}{x^{2}+x-2}
|
domain of-2x^2-2x-2
|
domain\:-2x^{2}-2x-2
|
inflection points of (2x^2)/(x^2-1)
|
inflection\:points\:\frac{2x^{2}}{x^{2}-1}
|
inflection points of f(x)=4x^3e^x
|
inflection\:points\:f(x)=4x^{3}e^{x}
|
inverse of x/(x+8)
|
inverse\:\frac{x}{x+8}
|
domain of f(x)=3e^x+2
|
domain\:f(x)=3e^{x}+2
|
slope of 4x+y=9
|
slope\:4x+y=9
|
inverse of f(x)=(-x-13)/7
|
inverse\:f(x)=\frac{-x-13}{7}
|
shift 3-4sin(2/3 (x-1))
|
shift\:3-4\sin(\frac{2}{3}(x-1))
|
asymptotes of xe^x
|
asymptotes\:xe^{x}
|
inverse of 7x^2+5
|
inverse\:7x^{2}+5
|
domain of f(x)= 1/(sqrt(3+x))
|
domain\:f(x)=\frac{1}{\sqrt{3+x}}
|
inverse of y=x^2-4
|
inverse\:y=x^{2}-4
|
inverse of y^3
|
inverse\:y^{3}
|
range of s^3
|
range\:s^{3}
|
symmetry y=x^2+4
|
symmetry\:y=x^{2}+4
|
range of f(x)=sqrt(1-x)
|
range\:f(x)=\sqrt{1-x}
|
inverse of f(x)=(3x+2)/(x-1)
|
inverse\:f(x)=\frac{3x+2}{x-1}
|
amplitude of cos(x)+10
|
amplitude\:\cos(x)+10
|
inflection points of f(x)=-x^3+12x-16
|
inflection\:points\:f(x)=-x^{3}+12x-16
|
range of |x+4|+3
|
range\:|x+4|+3
|
inverse of f(x)= 3/(x+4)
|
inverse\:f(x)=\frac{3}{x+4}
|
extreme points of f(x)=4x^2(x-6)
|
extreme\:points\:f(x)=4x^{2}(x-6)
|
domain of (x^3-x)/(1+x^2)
|
domain\:\frac{x^{3}-x}{1+x^{2}}
|
domain of tan(arccos(x))
|
domain\:\tan(\arccos(x))
|
inverse of f(x)=(x-4)/5
|
inverse\:f(x)=\frac{x-4}{5}
|
inverse of \sqrt[3]{x+6}
|
inverse\:\sqrt[3]{x+6}
|
extreme points of f(x)=(x-3)*e^{-x}
|
extreme\:points\:f(x)=(x-3)\cdot\:e^{-x}
|
slope intercept of 9x-16y=5
|
slope\:intercept\:9x-16y=5
|
periodicity of f(x)=-3sin(2x)
|
periodicity\:f(x)=-3\sin(2x)
|
slope of f(x)=1
|
slope\:f(x)=1
|
inverse of x+9
|
inverse\:x+9
|
perpendicular y=2x-3,\at (-7,-2)
|
perpendicular\:y=2x-3,\at\:(-7,-2)
|
midpoint (-4,-1)(-1,4)
|
midpoint\:(-4,-1)(-1,4)
|
symmetry 3x^2+4
|
symmetry\:3x^{2}+4
|
line m=-3,\at (-4,5)
|
line\:m=-3,\at\:(-4,5)
|
distance (-3,1)(1,-3)
|
distance\:(-3,1)(1,-3)
|
slope intercept of 3x-2(x+1)=2y-4x
|
slope\:intercept\:3x-2(x+1)=2y-4x
|
extreme points of f(x)=5sin(x)+5cos(x)
|
extreme\:points\:f(x)=5\sin(x)+5\cos(x)
|
domain of f(x)=(sqrt(x-2))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x-2}}{x-5}
|
domain of f(x)=8sqrt(x)
|
domain\:f(x)=8\sqrt{x}
|
range of x^2-9
|
range\:x^{2}-9
|
midpoint (0,2)(2,8)
|
midpoint\:(0,2)(2,8)
|
domain of sqrt(x^2-4x+3)
|
domain\:\sqrt{x^{2}-4x+3}
|
parity f(x)=2(x)-tan(x)
|
parity\:f(x)=2(x)-\tan(x)
|
domain of y=x^2+2x+1
|
domain\:y=x^{2}+2x+1
|
parity f(x)=((x^2-2x-8))/(-3x^3+18x-24)
|
parity\:f(x)=\frac{(x^{2}-2x-8)}{-3x^{3}+18x-24}
|
monotone intervals f(x)= 1/(x^2+1)
|
monotone\:intervals\:f(x)=\frac{1}{x^{2}+1}
|
slope intercept of-x-3y=-12
|
slope\:intercept\:-x-3y=-12
|
periodicity of f(x)= 4/5 cos((pi x)/2)
|
periodicity\:f(x)=\frac{4}{5}\cos(\frac{\pi\:x}{2})
|