inverse f(x)= 2/(3x+1)
|
inverse\:f(x)=\frac{2}{3x+1}
|
inverse f(x)=2e^{x-1}+1
|
inverse\:f(x)=2e^{x-1}+1
|
inverse f(x)=(2^x)/(2+2^x)
|
inverse\:f(x)=\frac{2^{x}}{2+2^{x}}
|
inverse ln(5x+1)-7
|
inverse\:\ln(5x+1)-7
|
inverse f(x)=sqrt(x-3)+1
|
inverse\:f(x)=\sqrt{x-3}+1
|
inverse f(x)=(d-12)/(2d+1)
|
inverse\:f(x)=\frac{d-12}{2d+1}
|
inverse f(x)=(2x+5)/(7x+6)
|
inverse\:f(x)=\frac{2x+5}{7x+6}
|
inverse f(x)=(5x-1)/(-x+2)
|
inverse\:f(x)=\frac{5x-1}{-x+2}
|
inverse f(x)=((x+7)^7)/8
|
inverse\:f(x)=\frac{(x+7)^{7}}{8}
|
inverse f(x)=(x^3)/7
|
inverse\:f(x)=\frac{x^{3}}{7}
|
inverse f(x)=-4/3 x-8
|
inverse\:f(x)=-\frac{4}{3}x-8
|
inverse f(x)=(6-3x)/(5x+7)
|
inverse\:f(x)=\frac{6-3x}{5x+7}
|
inverse f(x)=2^{x-2}-1
|
inverse\:f(x)=2^{x-2}-1
|
inverse f(x)=2*3^x+9^x+3
|
inverse\:f(x)=2\cdot\:3^{x}+9^{x}+3
|
inverse f(x)=7-14x
|
inverse\:f(x)=7-14x
|
inverse f(x)=-1-x^3
|
inverse\:f(x)=-1-x^{3}
|
inverse g(x)=4(x-1)^2
|
inverse\:g(x)=4(x-1)^{2}
|
inverse f(x)=10x+3
|
inverse\:f(x)=10x+3
|
inverse f(x)=(2x)/(x+4)
|
inverse\:f(x)=\frac{2x}{x+4}
|
inverse arctan(-1)
|
inverse\:\arctan(-1)
|
inverse (x+3)/(x-4)
|
inverse\:\frac{x+3}{x-4}
|
asymptotes f(x)=(-6x)/(x^2+3)
|
asymptotes\:f(x)=\frac{-6x}{x^{2}+3}
|
inverse f(x)= x/3+5
|
inverse\:f(x)=\frac{x}{3}+5
|
inverse f(x)=3^{x+1}-9
|
inverse\:f(x)=3^{x+1}-9
|
inverse (13x)/(x+13)
|
inverse\:\frac{13x}{x+13}
|
inverse f(x)=(x+2)/(x+1)
|
inverse\:f(x)=\frac{x+2}{x+1}
|
inverse arcsin((sqrt(3))/2)
|
inverse\:\arcsin(\frac{\sqrt{3}}{2})
|
inverse f(x)=-tan(x+π/3)+sqrt(2)
|
inverse\:f(x)=-\tan(x+\frac{π}{3})+\sqrt{2}
|
inverse f(y)=\sqrt[3]{9(y-6)}
|
inverse\:f(y)=\sqrt[3]{9(y-6)}
|
inverse f(x)=(x^2-1)/4
|
inverse\:f(x)=\frac{x^{2}-1}{4}
|
inverse \sqrt[3]{x+7}
|
inverse\:\sqrt[3]{x+7}
|
inverse f(x)=sqrt(-x+6)
|
inverse\:f(x)=\sqrt{-x+6}
|
inverse f(x)=-1/2 x+15
|
inverse\:f(x)=-\frac{1}{2}x+15
|
slope x=4y
|
slope\:x=4y
|
inverse f(x)=x^2+16
|
inverse\:f(x)=x^{2}+16
|
inverse f(x)=((2x-3))/(5x-7)
|
inverse\:f(x)=\frac{(2x-3)}{5x-7}
|
inverse f(x)=3+2x+x^2
|
inverse\:f(x)=3+2x+x^{2}
|
inverse f(x)=-(4x)/7
|
inverse\:f(x)=-\frac{4x}{7}
|
inverse f(x)=2ln((x+3)/5)
|
inverse\:f(x)=2\ln(\frac{x+3}{5})
|
inverse f(x)=(x^2+5x)^{1/2}
|
inverse\:f(x)=(x^{2}+5x)^{\frac{1}{2}}
|
inverse e^{x+1}
|
inverse\:e^{x+1}
|
inverse f(x)=(x^7)/8+8
|
inverse\:f(x)=\frac{x^{7}}{8}+8
|
inverse f(x)=x^2-2x+4
|
inverse\:f(x)=x^{2}-2x+4
|
inverse f(x)= 1/10 x-7/10
|
inverse\:f(x)=\frac{1}{10}x-\frac{7}{10}
|
midpoint (-4,8)(4,-2)
|
midpoint\:(-4,8)(4,-2)
|
inverse f(x)=(x+5)/(x-4)
|
inverse\:f(x)=\frac{x+5}{x-4}
|
inverse f(x)=sqrt(x+1)-1
|
inverse\:f(x)=\sqrt{x+1}-1
|
inverse f(x)=x^2+2,x<0
|
inverse\:f(x)=x^{2}+2,x<0
|
inverse f(x)=((x-1))/2
|
inverse\:f(x)=\frac{(x-1)}{2}
|
inverse f(x)=-4/(5x)
|
inverse\:f(x)=-\frac{4}{5x}
|
inverse 10
|
inverse\:10
|
inverse f(x)= 2/7 x-10/7
|
inverse\:f(x)=\frac{2}{7}x-\frac{10}{7}
|
inverse f(x)=x^4+2,x>= 0
|
inverse\:f(x)=x^{4}+2,x\ge\:0
|
inverse f(x)=-(2x)/9
|
inverse\:f(x)=-\frac{2x}{9}
|
inverse f(x)=-2(x-1)^3
|
inverse\:f(x)=-2(x-1)^{3}
|
perpendicular 2x+6y=1
|
perpendicular\:2x+6y=1
|
inverse 7x^2-9
|
inverse\:7x^{2}-9
|
inverse f(x)= 1/8 x^3
|
inverse\:f(x)=\frac{1}{8}x^{3}
|
inverse f(x)=arcsin(sqrt(x))
|
inverse\:f(x)=\arcsin(\sqrt{x})
|
inverse f(x)= 2/3 x-7
|
inverse\:f(x)=\frac{2}{3}x-7
|
inverse e^{x^2}
|
inverse\:e^{x^{2}}
|
inverse f(x)=5e^{x-3}
|
inverse\:f(x)=5e^{x-3}
|
inverse f(x)=(\sqrt[7]{x}-8)/3
|
inverse\:f(x)=\frac{\sqrt[7]{x}-8}{3}
|
inverse f(x)=2x^{2/5}
|
inverse\:f(x)=2x^{\frac{2}{5}}
|
inverse f(x)=(-x+4)/5
|
inverse\:f(x)=\frac{-x+4}{5}
|
inverse f(x)=-3/(4x)
|
inverse\:f(x)=-\frac{3}{4x}
|
inverse f(x)=160t-16t^2
|
inverse\:f(x)=160t-16t^{2}
|
inverse f(x)=(10)/(x-4)
|
inverse\:f(x)=\frac{10}{x-4}
|
inverse f(x)=-3/2 x
|
inverse\:f(x)=-\frac{3}{2}x
|
inverse f(x)=(5x-4)^2+2
|
inverse\:f(x)=(5x-4)^{2}+2
|
inverse f(x)=ln(2x-3)-ln(x+5)+1,x>= 2
|
inverse\:f(x)=\ln(2x-3)-\ln(x+5)+1,x\ge\:2
|
inverse f(x)=sqrt(e^x+4)
|
inverse\:f(x)=\sqrt{e^{x}+4}
|
inverse f(x)=(5x)/(x-7)
|
inverse\:f(x)=\frac{5x}{x-7}
|
inverse f(x)= 1/2 x-1/2
|
inverse\:f(x)=\frac{1}{2}x-\frac{1}{2}
|
inverse f(x)=(x-5)^2+9
|
inverse\:f(x)=(x-5)^{2}+9
|
inverse f(x)=e^x-2
|
inverse\:f(x)=e^{x}-2
|
inverse f(x)=3x^2+2,x>= 0
|
inverse\:f(x)=3x^{2}+2,x\ge\:0
|
slope 3x-4y=-8
|
slope\:3x-4y=-8
|
inverse f(x)=e^{x-5}
|
inverse\:f(x)=e^{x-5}
|
inverse y=arcsec(x)
|
inverse\:y=\arcsec(x)
|
inverse f(x)=-3/(x+1)-3
|
inverse\:f(x)=-\frac{3}{x+1}-3
|
inverse (x-1)/(2x+3)
|
inverse\:\frac{x-1}{2x+3}
|
inverse f(x)= 1/8 x-5/8
|
inverse\:f(x)=\frac{1}{8}x-\frac{5}{8}
|
inverse f(x)=\sqrt[3]{8x}+4
|
inverse\:f(x)=\sqrt[3]{8x}+4
|
inverse f(x)=((17x-6))/((-9x-3))
|
inverse\:f(x)=\frac{(17x-6)}{(-9x-3)}
|
inverse g(x)=2\sqrt[3]{x-3}+4
|
inverse\:g(x)=2\sqrt[3]{x-3}+4
|
inverse f(x)=(10e^{2x}+8)/(4+e^{2x)}
|
inverse\:f(x)=\frac{10e^{2x}+8}{4+e^{2x}}
|
inverse f(x)=(3x-7)/(4x-7)
|
inverse\:f(x)=\frac{3x-7}{4x-7}
|
domain sqrt(4-x^2)
|
domain\:\sqrt{4-x^{2}}
|
inverse f(x)=log_{10}((x+4)/2)-3
|
inverse\:f(x)=\log_{10}(\frac{x+4}{2})-3
|
inverse y=x^2-6x+8
|
inverse\:y=x^{2}-6x+8
|
inverse f(x)=\sqrt[3]{x+4}-5
|
inverse\:f(x)=\sqrt[3]{x+4}-5
|
inverse f(x)=\sqrt[5]{(1-5x)/(3/2 x-2)}-3
|
inverse\:f(x)=\sqrt[5]{\frac{1-5x}{\frac{3}{2}x-2}}-3
|
inverse f(x)=(2x-1)/(3-4x)
|
inverse\:f(x)=\frac{2x-1}{3-4x}
|
inverse f(x)=(3x^3+2)^{1/5}
|
inverse\:f(x)=(3x^{3}+2)^{\frac{1}{5}}
|
inverse f(x)=(2x+1)/(x-2)
|
inverse\:f(x)=\frac{2x+1}{x-2}
|
inverse f(x)=((3-2x))/(3x+2)
|
inverse\:f(x)=\frac{(3-2x)}{3x+2}
|
inverse f(x)=(\sqrt[3]{x-6})/4
|
inverse\:f(x)=\frac{\sqrt[3]{x-6}}{4}
|
inverse f(x)=ln(x+sqrt(x^2+1))
|
inverse\:f(x)=\ln(x+\sqrt{x^{2}+1})
|
domain-1/6 x^2+200x
|
domain\:-\frac{1}{6}x^{2}+200x
|