critical points of f(x)= 1/(x+3)
|
critical\:points\:f(x)=\frac{1}{x+3}
|
parity y=tan^2(3x^2-5)/((4x^2-3x))
|
parity\:y=\tan^{2}(3x^{2}-5)/((4x^{2}-3x))
|
e^t
|
e^{t}
|
domain of f(x)=(x^2-1)/(x-2)
|
domain\:f(x)=\frac{x^{2}-1}{x-2}
|
critical points of (e^x)/(7+e^x)
|
critical\:points\:\frac{e^{x}}{7+e^{x}}
|
inverse of f(x)=4x^4
|
inverse\:f(x)=4x^{4}
|
range of f(x)=(x+1)^2-4
|
range\:f(x)=(x+1)^{2}-4
|
inflection points of f(x)=x^3-4x^2-16x+9
|
inflection\:points\:f(x)=x^{3}-4x^{2}-16x+9
|
inverse of y=log_{5}(x)-9
|
inverse\:y=\log_{5}(x)-9
|
line (4,11)(9,26)
|
line\:(4,11)(9,26)
|
domain of f(x)=(x+2)^{1/2}
|
domain\:f(x)=(x+2)^{\frac{1}{2}}
|
line (0,1),(1,3)
|
line\:(0,1),(1,3)
|
slope of y=8
|
slope\:y=8
|
asymptotes of f(x)=((x+1)^2)/(x^2-3x-4)
|
asymptotes\:f(x)=\frac{(x+1)^{2}}{x^{2}-3x-4}
|
extreme points of f(x)=\sqrt[3]{x-1}
|
extreme\:points\:f(x)=\sqrt[3]{x-1}
|
slope intercept of y=-2x+6
|
slope\:intercept\:y=-2x+6
|
parity f(x)=4x^3+4x^2-3x-1
|
parity\:f(x)=4x^{3}+4x^{2}-3x-1
|
parity (e^x-1)/(e^x+1)
|
parity\:\frac{e^{x}-1}{e^{x}+1}
|
inverse of g(x)=3x
|
inverse\:g(x)=3x
|
range of f(x)=4x^2-8x-1
|
range\:f(x)=4x^{2}-8x-1
|
asymptotes of f(x)=a^x
|
asymptotes\:f(x)=a^{x}
|
domain of f(x)=12x+29
|
domain\:f(x)=12x+29
|
inverse of f(x)= 2/(x^2)
|
inverse\:f(x)=\frac{2}{x^{2}}
|
line (-1x)/3+2/1+(5x)/2-6/1
|
line\:\frac{-1x}{3}+\frac{2}{1}+\frac{5x}{2}-\frac{6}{1}
|
symmetry y=x^2-2x-5
|
symmetry\:y=x^{2}-2x-5
|
asymptotes of f(x)=(x^2+3x)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}+3x}{x+3}
|
parity f(x)=sqrt(1+x+x^2)-sqrt(1-x+x^2)
|
parity\:f(x)=\sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}}
|
domain of f(x)=(x-2)/(x+8)
|
domain\:f(x)=\frac{x-2}{x+8}
|
asymptotes of f(x)= x/(x^2+8)
|
asymptotes\:f(x)=\frac{x}{x^{2}+8}
|
slope intercept of 7x-5y=-19
|
slope\:intercept\:7x-5y=-19
|
inverse of f(x)=\sqrt[5]{x}
|
inverse\:f(x)=\sqrt[5]{x}
|
midpoint (-6,-5)(-6,9)
|
midpoint\:(-6,-5)(-6,9)
|
inverse of f(x)=(x-2)^2+1
|
inverse\:f(x)=(x-2)^{2}+1
|
symmetry x^4+x^2
|
symmetry\:x^{4}+x^{2}
|
inverse of f(x)=(8x)/(9x-2)
|
inverse\:f(x)=\frac{8x}{9x-2}
|
intercepts of f(x)=160-25y
|
intercepts\:f(x)=160-25y
|
domain of f(x)=5-2sqrt(6-7x)
|
domain\:f(x)=5-2\sqrt{6-7x}
|
midpoint (1,4)(1,-5)
|
midpoint\:(1,4)(1,-5)
|
asymptotes of (x^2)/(2x-4)
|
asymptotes\:\frac{x^{2}}{2x-4}
|
perpendicular y=-4x+3,\at (8,1)
|
perpendicular\:y=-4x+3,\at\:(8,1)
|
monotone intervals f(x)= 1/x
|
monotone\:intervals\:f(x)=\frac{1}{x}
|
asymptotes of (((x+2)(x-3)))/(2x^2)
|
asymptotes\:\frac{((x+2)(x-3))}{2x^{2}}
|
domain of f(x)= 1/(4x-x^2)
|
domain\:f(x)=\frac{1}{4x-x^{2}}
|
critical points of f(x)=(x^2)/((x^3+8))
|
critical\:points\:f(x)=\frac{x^{2}}{(x^{3}+8)}
|
extreme points of x/(x^2+25)
|
extreme\:points\:\frac{x}{x^{2}+25}
|
asymptotes of f(x)=(7x-3)/(5x-9)
|
asymptotes\:f(x)=\frac{7x-3}{5x-9}
|
inverse of \sqrt[4]{y}
|
inverse\:\sqrt[4]{y}
|
domain of f(x)=-sqrt(x-1)+4
|
domain\:f(x)=-\sqrt{x-1}+4
|
critical points of (4x^3+7x^2-10x-8)
|
critical\:points\:(4x^{3}+7x^{2}-10x-8)
|
critical points of f(x)=(-9)/(x^2+6)
|
critical\:points\:f(x)=\frac{-9}{x^{2}+6}
|
inverse of f(x)=18-5x
|
inverse\:f(x)=18-5x
|
midpoint (6,3)(8,1)
|
midpoint\:(6,3)(8,1)
|
intercepts of f(x)=x^4+50x^2+625
|
intercepts\:f(x)=x^{4}+50x^{2}+625
|
inverse of f(x)=-2(x+1)^2-3,x>= 1
|
inverse\:f(x)=-2(x+1)^{2}-3,x\ge\:1
|
domain of 1/(x^2-3x+2)
|
domain\:\frac{1}{x^{2}-3x+2}
|
amplitude of sin(x)+8
|
amplitude\:\sin(x)+8
|
inverse of f(x)=(x+1)/(x-2)=10
|
inverse\:f(x)=\frac{x+1}{x-2}=10
|
line (0,4)(2,-2)
|
line\:(0,4)(2,-2)
|
inflection points of 8x^4-48x^2
|
inflection\:points\:8x^{4}-48x^{2}
|
inverse of f(x)=sqrt(x-7)
|
inverse\:f(x)=\sqrt{x-7}
|
distance (-4,-3)(-1,-1)
|
distance\:(-4,-3)(-1,-1)
|
inverse of f(x)=\sqrt[5]{x}+1
|
inverse\:f(x)=\sqrt[5]{x}+1
|
domain of f(x)=-sqrt(x+3)-2
|
domain\:f(x)=-\sqrt{x+3}-2
|
perpendicular y=-1/9 x-8/9 ,\at (1,-4)
|
perpendicular\:y=-\frac{1}{9}x-\frac{8}{9},\at\:(1,-4)
|
inverse of f(x)=x^3-2
|
inverse\:f(x)=x^{3}-2
|
range of y=cos^{-1}(x)
|
range\:y=\cos^{-1}(x)
|
periodicity of sin(2.8x+0.9)+0.3
|
periodicity\:\sin(2.8x+0.9)+0.3
|
domain of f(x)=((x^2))/(x+1)
|
domain\:f(x)=\frac{(x^{2})}{x+1}
|
range of f(x)=ln(x)
|
range\:f(x)=\ln(x)
|
line ax+c=0
|
line\:ax+c=0
|
range of \sqrt[5]{x/5}
|
range\:\sqrt[5]{\frac{x}{5}}
|
inflection points of x^{1/5}
|
inflection\:points\:x^{\frac{1}{5}}
|
range of f(x)=-2x^2+16x-29
|
range\:f(x)=-2x^{2}+16x-29
|
domain of sqrt(36-x^2)+sqrt(x+1)
|
domain\:\sqrt{36-x^{2}}+\sqrt{x+1}
|
range of x^2-10x+16
|
range\:x^{2}-10x+16
|
inverse of f(x)=4sqrt(2x+4)-3
|
inverse\:f(x)=4\sqrt{2x+4}-3
|
critical points of f(x)=(40t)/(t^2+25)
|
critical\:points\:f(x)=\frac{40t}{t^{2}+25}
|
parallel y=-1/4 x+5
|
parallel\:y=-\frac{1}{4}x+5
|
inverse of 9x-5
|
inverse\:9x-5
|
domain of f(x)=(x^2-x-2)/(x-2)
|
domain\:f(x)=\frac{x^{2}-x-2}{x-2}
|
critical points of f(x)=2x^2-6x^4
|
critical\:points\:f(x)=2x^{2}-6x^{4}
|
asymptotes of f(x)= 1/(x(x+3))
|
asymptotes\:f(x)=\frac{1}{x(x+3)}
|
line (-3,2)(3,-7)
|
line\:(-3,2)(3,-7)
|
intercepts of f(x)=x^2-14x+49
|
intercepts\:f(x)=x^{2}-14x+49
|
slope intercept of-7y+2x=18
|
slope\:intercept\:-7y+2x=18
|
extreme points of g(x)=ex/(3x),x> 0
|
extreme\:points\:g(x)=ex/(3x),x\gt\:0
|
asymptotes of (2x^2-4)/(x+3)
|
asymptotes\:\frac{2x^{2}-4}{x+3}
|
inverse of f(x)=sin(10x)
|
inverse\:f(x)=\sin(10x)
|
slope intercept of 3x+5y=10
|
slope\:intercept\:3x+5y=10
|
inverse of 3/(x^2)
|
inverse\:\frac{3}{x^{2}}
|
range of 2/3 sqrt(x+6)-2
|
range\:\frac{2}{3}\sqrt{x+6}-2
|
sin(x)cos(x)
|
\sin(x)\cos(x)
|
range of g(x)=3^{x-3}
|
range\:g(x)=3^{x-3}
|
range of x^2-8
|
range\:x^{2}-8
|
intercepts of f(x)=-3(x-1)^2-9
|
intercepts\:f(x)=-3(x-1)^{2}-9
|
range of f(x)=(1/3)^x
|
range\:f(x)=(\frac{1}{3})^{x}
|
domain of f(x)=-4x-7
|
domain\:f(x)=-4x-7
|
asymptotes of 5/(x^2-9)
|
asymptotes\:\frac{5}{x^{2}-9}
|
symmetry x=8y2+6
|
symmetry\:x=8y2+6
|
domain of f(x)=-7/(2t^{3/2)}
|
domain\:f(x)=-\frac{7}{2t^{\frac{3}{2}}}
|