parity f(x)=e^{,\at}
|
parity\:f(x)=e^{,\at\:}
|
inverse of f(x)=2x^5-5
|
inverse\:f(x)=2x^{5}-5
|
domain of f(x)=-x^2+44x+1
|
domain\:f(x)=-x^{2}+44x+1
|
domain of f(x)=(x+4)/(x-9)
|
domain\:f(x)=\frac{x+4}{x-9}
|
periodicity of f(x)=e^{-2x}cos(2pi x)
|
periodicity\:f(x)=e^{-2x}\cos(2\pi\:x)
|
range of f(x)=-x^2-4x-8
|
range\:f(x)=-x^{2}-4x-8
|
extreme points of f(x)=-x^3+6x^2-14
|
extreme\:points\:f(x)=-x^{3}+6x^{2}-14
|
perpendicular-4x-5y=7,\at (-4,-3)
|
perpendicular\:-4x-5y=7,\at\:(-4,-3)
|
intercepts of f(x)=9-x^2
|
intercepts\:f(x)=9-x^{2}
|
line x-4
|
line\:x-4
|
inverse of f(x)=0.75^x
|
inverse\:f(x)=0.75^{x}
|
asymptotes of f(x)=((x^4))/(x-2)
|
asymptotes\:f(x)=\frac{(x^{4})}{x-2}
|
range of (x-4)^2-5
|
range\:(x-4)^{2}-5
|
symmetry x^2-5
|
symmetry\:x^{2}-5
|
slope intercept of x+3=0
|
slope\:intercept\:x+3=0
|
domain of f(x)=(4t)/(t+1)
|
domain\:f(x)=\frac{4t}{t+1}
|
asymptotes of f(x)=5n^2+3n+1
|
asymptotes\:f(x)=5n^{2}+3n+1
|
asymptotes of f(x)=(x+5)/(x+4)
|
asymptotes\:f(x)=\frac{x+5}{x+4}
|
inverse of x^5-2
|
inverse\:x^{5}-2
|
inverse of y=1+sqrt(2+3x)
|
inverse\:y=1+\sqrt{2+3x}
|
extreme points of f(x)=x^3+3x^2+3x+2
|
extreme\:points\:f(x)=x^{3}+3x^{2}+3x+2
|
domain of f(x)=sqrt(3x-9)-1
|
domain\:f(x)=\sqrt{3x-9}-1
|
domain of g(x)=(x+3)/(x^2-9)
|
domain\:g(x)=\frac{x+3}{x^{2}-9}
|
inverse of f(x)= 3/(x+2)-1
|
inverse\:f(x)=\frac{3}{x+2}-1
|
intercepts of (x-2)/(x+2)
|
intercepts\:\frac{x-2}{x+2}
|
periodicity of f(x)=sin(3x-2pi)
|
periodicity\:f(x)=\sin(3x-2\pi)
|
domain of (1-x)/x
|
domain\:\frac{1-x}{x}
|
extreme points of f(x)=2x-4
|
extreme\:points\:f(x)=2x-4
|
inverse of f(x)= 2/(x+8)
|
inverse\:f(x)=\frac{2}{x+8}
|
periodicity of f(x)=3sin(2x-pi)
|
periodicity\:f(x)=3\sin(2x-\pi)
|
domain of (sqrt(x))/(x-5)
|
domain\:\frac{\sqrt{x}}{x-5}
|
extreme points of f(x)=x^3-48x
|
extreme\:points\:f(x)=x^{3}-48x
|
inverse of 4sin(x)-5
|
inverse\:4\sin(x)-5
|
range of 3x
|
range\:3x
|
parity (sin(2*x))^{4*x}
|
parity\:(\sin(2\cdot\:x))^{4\cdot\:x}
|
range of f(x)=-|x-5|+8
|
range\:f(x)=-|x-5|+8
|
domain of f(x)=sqrt(1-2x)
|
domain\:f(x)=\sqrt{1-2x}
|
extreme points of f(x)=x^3-x^2-x+5
|
extreme\:points\:f(x)=x^{3}-x^{2}-x+5
|
domain of-16(x+7)^2-3
|
domain\:-16(x+7)^{2}-3
|
domain of f(x)=(x-3)/(x^2+6x+9)
|
domain\:f(x)=\frac{x-3}{x^{2}+6x+9}
|
inverse of (-x-2)/(11)
|
inverse\:\frac{-x-2}{11}
|
domain of f(x)= 2/((\frac{x){x+2})}
|
domain\:f(x)=\frac{2}{(\frac{x}{x+2})}
|
range of f(x)=(2x)/(x^2+x+1)
|
range\:f(x)=\frac{2x}{x^{2}+x+1}
|
intercepts of f(x)=6.5x+4.3y-6.2=0
|
intercepts\:f(x)=6.5x+4.3y-6.2=0
|
domain of f(x)=|x+1|
|
domain\:f(x)=|x+1|
|
domain of f(x)=x^2+x-9
|
domain\:f(x)=x^{2}+x-9
|
f(x)=2^x
|
f(x)=2^{x}
|
monotone intervals x^2-4x-12
|
monotone\:intervals\:x^{2}-4x-12
|
monotone intervals f(x)= x/(x^3-1)
|
monotone\:intervals\:f(x)=\frac{x}{x^{3}-1}
|
domain of f(x)=sqrt(x^2-5x-14)
|
domain\:f(x)=\sqrt{x^{2}-5x-14}
|
domain of f(x)=t+2
|
domain\:f(x)=t+2
|
line (2,0),(0,-4)
|
line\:(2,0),(0,-4)
|
domain of f(x)=x^2+6x+12
|
domain\:f(x)=x^{2}+6x+12
|
range of f(x)=x^2+9
|
range\:f(x)=x^{2}+9
|
critical points of f(x)=-2x-16
|
critical\:points\:f(x)=-2x-16
|
range of (x^2)/(x+2)
|
range\:\frac{x^{2}}{x+2}
|
inverse of sqrt(x-3)+2
|
inverse\:\sqrt{x-3}+2
|
extreme points of 0.577
|
extreme\:points\:0.577
|
critical points of f(x)=13x+1/x
|
critical\:points\:f(x)=13x+\frac{1}{x}
|
intercepts of 5.5556x^2
|
intercepts\:5.5556x^{2}
|
asymptotes of f(x)=sqrt(4x^2-1)
|
asymptotes\:f(x)=\sqrt{4x^{2}-1}
|
periodicity of f(x)=-16cos(4/3 x)
|
periodicity\:f(x)=-16\cos(\frac{4}{3}x)
|
inverse of f(x)=(2x-1)/(4+5x)
|
inverse\:f(x)=\frac{2x-1}{4+5x}
|
domain of g(x)=(x-2)/(1-3x)
|
domain\:g(x)=\frac{x-2}{1-3x}
|
domain of f(x)=(x^2)
|
domain\:f(x)=(x^{2})
|
monotone intervals f(x)=6(x-2)^{2/3}
|
monotone\:intervals\:f(x)=6(x-2)^{\frac{2}{3}}
|
slope of ,y=3sqrt(4)
|
slope\:,y=3\sqrt{4}
|
slope of-7x-2y=14
|
slope\:-7x-2y=14
|
intercepts of f(x)=3x^3+7y=6
|
intercepts\:f(x)=3x^{3}+7y=6
|
inverse of f(x)=e^{2x-9}
|
inverse\:f(x)=e^{2x-9}
|
inflection points of (e^x-e^{-x})/8
|
inflection\:points\:\frac{e^{x}-e^{-x}}{8}
|
inflection points of f(x)=-4x^4+24x^2
|
inflection\:points\:f(x)=-4x^{4}+24x^{2}
|
slope intercept of y-4= 9/7 (x-4)
|
slope\:intercept\:y-4=\frac{9}{7}(x-4)
|
slope of y=-3x+3
|
slope\:y=-3x+3
|
intercepts of y=x^2-6x+5
|
intercepts\:y=x^{2}-6x+5
|
range of 7/(3+e^x)
|
range\:\frac{7}{3+e^{x}}
|
monotone intervals f(x)=((x+1)^2)/(x-4)
|
monotone\:intervals\:f(x)=\frac{(x+1)^{2}}{x-4}
|
domain of f(x)= 4/(x^2-2x)
|
domain\:f(x)=\frac{4}{x^{2}-2x}
|
asymptotes of f(x)=((6-2x))/(x+3)
|
asymptotes\:f(x)=\frac{(6-2x)}{x+3}
|
slope intercept of 4x+10y=70
|
slope\:intercept\:4x+10y=70
|
parity (3x+4)/(2x-3)
|
parity\:\frac{3x+4}{2x-3}
|
domain of f(x)=1+1/x
|
domain\:f(x)=1+\frac{1}{x}
|
inverse of f(x)= 1/((x+1))
|
inverse\:f(x)=\frac{1}{(x+1)}
|
domain of f(x)=sqrt(16-x)
|
domain\:f(x)=\sqrt{16-x}
|
intercepts of y=7tan(0.4x)y=7tan(0.4x)
|
intercepts\:y=7\tan(0.4x)y=7\tan(0.4x)
|
inverse of f(x)=5^{x+5}
|
inverse\:f(x)=5^{x+5}
|
asymptotes of f(x)=(x-4)/(x^2-7x+10)
|
asymptotes\:f(x)=\frac{x-4}{x^{2}-7x+10}
|
inverse of cos(2x+5)
|
inverse\:\cos(2x+5)
|
periodicity of-2sin(x)
|
periodicity\:-2\sin(x)
|
domain of f(x)= x/(2x)
|
domain\:f(x)=\frac{x}{2x}
|
distance (0,0)(5,5)
|
distance\:(0,0)(5,5)
|
domain of f(x)=(x^2+4)/(2x-3)
|
domain\:f(x)=\frac{x^{2}+4}{2x-3}
|
periodicity of y=2cos(pi x)
|
periodicity\:y=2\cos(\pi\:x)
|
inverse of f(x)=-2(x-3)^2+5
|
inverse\:f(x)=-2(x-3)^{2}+5
|
inverse of 7log_{7}(x)
|
inverse\:7\log_{7}(x)
|
inverse of f(x)=-ln(x-2)
|
inverse\:f(x)=-\ln(x-2)
|
critical points of sin(theta)+cos(theta)
|
critical\:points\:\sin(\theta)+\cos(\theta)
|
asymptotes of x^2+1
|
asymptotes\:x^{2}+1
|
inverse of f(x)=e^{arctan(x)}
|
inverse\:f(x)=e^{\arctan(x)}
|
range of f(x)=3x-2
|
range\:f(x)=3x-2
|