intercepts of f(x)=(3x)/(x-5)
|
intercepts\:f(x)=\frac{3x}{x-5}
|
slope of x-7=0
|
slope\:x-7=0
|
domain of x/(x^2+9)
|
domain\:\frac{x}{x^{2}+9}
|
slope intercept of 2x-3y=9
|
slope\:intercept\:2x-3y=9
|
domain of sqrt(t+3)
|
domain\:\sqrt{t+3}
|
3x-2
|
3x-2
|
inverse of f(x)=x+16
|
inverse\:f(x)=x+16
|
intercepts of f(x)=x+y=2
|
intercepts\:f(x)=x+y=2
|
intercepts of (x-9)/2
|
intercepts\:\frac{x-9}{2}
|
parity cot^{-1}(tan(theta))
|
parity\:\cot^{-1}(\tan(\theta))
|
intercepts of x^4-8x^2+15
|
intercepts\:x^{4}-8x^{2}+15
|
range of f(x)=-2\sqrt[3]{x-2}+1
|
range\:f(x)=-2\sqrt[3]{x-2}+1
|
domain of f(x)=sqrt((x^2+x+1)/(x^3-x))
|
domain\:f(x)=\sqrt{\frac{x^{2}+x+1}{x^{3}-x}}
|
asymptotes of f(x)=(x^2+x-6)/(x^2+6x+9)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{2}+6x+9}
|
domain of f(x)=(x^2-4x)/(x^2-16)x=3.9
|
domain\:f(x)=\frac{x^{2}-4x}{x^{2}-16}x=3.9
|
range of 2x-4
|
range\:2x-4
|
inverse of f(x)=x^2-2x-15
|
inverse\:f(x)=x^{2}-2x-15
|
inverse of f(x)=2\sqrt[3]{x}-4
|
inverse\:f(x)=2\sqrt[3]{x}-4
|
domain of f(x)=((1))/(x+2)+3
|
domain\:f(x)=\frac{(1)}{x+2}+3
|
critical points of (0.23x)/(x^2+25)
|
critical\:points\:\frac{0.23x}{x^{2}+25}
|
periodicity of f(x)=sin((2pi x)/3-3pi)
|
periodicity\:f(x)=\sin(\frac{2\pi\:x}{3}-3\pi)
|
inverse of f(x)= 1/2 x-4
|
inverse\:f(x)=\frac{1}{2}x-4
|
domain of f(x)=(x^3+5x^2)/(7x^2-3)
|
domain\:f(x)=\frac{x^{3}+5x^{2}}{7x^{2}-3}
|
amplitude of f(x)=-4cos(x)+4
|
amplitude\:f(x)=-4\cos(x)+4
|
asymptotes of (-3)/(x-2)-1
|
asymptotes\:\frac{-3}{x-2}-1
|
domain of f(x)=(x+3)/(8-x)
|
domain\:f(x)=\frac{x+3}{8-x}
|
extreme points of x^4-4x^3+10
|
extreme\:points\:x^{4}-4x^{3}+10
|
inflection points of y=-x^3+12x-16
|
inflection\:points\:y=-x^{3}+12x-16
|
extreme points of f(x)=x^3-6x^2+9x+1
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9x+1
|
distance (6,-2)(-5,5)
|
distance\:(6,-2)(-5,5)
|
parallel 2x-4y+5=0,\at (-2,4)
|
parallel\:2x-4y+5=0,\at\:(-2,4)
|
domain of sqrt(1+2/x)
|
domain\:\sqrt{1+\frac{2}{x}}
|
inverse of f(x)=-2/3 x-8
|
inverse\:f(x)=-\frac{2}{3}x-8
|
inverse of f(x)=(-3-2x)/3
|
inverse\:f(x)=\frac{-3-2x}{3}
|
asymptotes of f(x)= 5/(x-2)+7
|
asymptotes\:f(x)=\frac{5}{x-2}+7
|
inverse of f(x)=1-x/6
|
inverse\:f(x)=1-\frac{x}{6}
|
domain of f(x)=(2-x^3)/(sqrt(9-x^2))
|
domain\:f(x)=\frac{2-x^{3}}{\sqrt{9-x^{2}}}
|
domain of 1/(sqrt(x^2-3x))
|
domain\:\frac{1}{\sqrt{x^{2}-3x}}
|
intercepts of f(x)=x^9-9x
|
intercepts\:f(x)=x^{9}-9x
|
shift 5tan(2x+pi)
|
shift\:5\tan(2x+\pi)
|
domain of 3^{x/(x-3)}
|
domain\:3^{\frac{x}{x-3}}
|
range of f(x)=x^2-1
|
range\:f(x)=x^{2}-1
|
domain of (5x+1)/(x^2-x-1)
|
domain\:\frac{5x+1}{x^{2}-x-1}
|
range of f(x)= 2/(sqrt(x))
|
range\:f(x)=\frac{2}{\sqrt{x}}
|
range of 2/3 |x+4|
|
range\:\frac{2}{3}|x+4|
|
inflection points of cos(x)
|
inflection\:points\:\cos(x)
|
domain of (2x)/(x^2-16)
|
domain\:\frac{2x}{x^{2}-16}
|
domain of (x+1)/(3x-8)
|
domain\:\frac{x+1}{3x-8}
|
range of 2/(2x-1)
|
range\:\frac{2}{2x-1}
|
slope of 7x+y=7
|
slope\:7x+y=7
|
inverse of 2+sqrt(3+x)
|
inverse\:2+\sqrt{3+x}
|
distance (-3,-1)(7,-5)
|
distance\:(-3,-1)(7,-5)
|
slope of 3x-5=0
|
slope\:3x-5=0
|
intercepts of f(x)=x^2-8x
|
intercepts\:f(x)=x^{2}-8x
|
inverse of f(x)=(x+5)/(-x-3)
|
inverse\:f(x)=\frac{x+5}{-x-3}
|
intercepts of f(x)=x^2+2x-2
|
intercepts\:f(x)=x^{2}+2x-2
|
midpoint (8,7)(2,1)
|
midpoint\:(8,7)(2,1)
|
inverse of f(x)=1-sqrt(x+2)
|
inverse\:f(x)=1-\sqrt{x+2}
|
inverse of log_{2}(x+2)-4
|
inverse\:\log_{2}(x+2)-4
|
slope intercept of (-4,2)m= 7/9
|
slope\:intercept\:(-4,2)m=\frac{7}{9}
|
slope of (6,3)((-6)/5)
|
slope\:(6,3)(\frac{-6}{5})
|
extreme points of f(x)=(x^2)/(2x-1)
|
extreme\:points\:f(x)=\frac{x^{2}}{2x-1}
|
asymptotes of ln(x-4)
|
asymptotes\:\ln(x-4)
|
intercepts of f(x)=(x-5)^2-9
|
intercepts\:f(x)=(x-5)^{2}-9
|
domain of f(x)=(sqrt(x-2))/(x-9)
|
domain\:f(x)=\frac{\sqrt{x-2}}{x-9}
|
domain of f(x)=sqrt(-9x+9)
|
domain\:f(x)=\sqrt{-9x+9}
|
inflection points of sin(pi t)
|
inflection\:points\:\sin(\pi\:t)
|
perpendicular y= 3/2 x-3
|
perpendicular\:y=\frac{3}{2}x-3
|
inverse of f(x)=(15-2x)/3
|
inverse\:f(x)=\frac{15-2x}{3}
|
asymptotes of y=(x+2)/(x^2-x-2)
|
asymptotes\:y=\frac{x+2}{x^{2}-x-2}
|
slope intercept of y+4=-4/5 (x+5)
|
slope\:intercept\:y+4=-\frac{4}{5}(x+5)
|
domain of f(x)= 1/(x^2-2x-3)
|
domain\:f(x)=\frac{1}{x^{2}-2x-3}
|
inverse of f(x)=(2x-3)^2-1
|
inverse\:f(x)=(2x-3)^{2}-1
|
extreme points of f(x)= 7/(x^2+1)
|
extreme\:points\:f(x)=\frac{7}{x^{2}+1}
|
domain of f(x)= 4/(x+4)
|
domain\:f(x)=\frac{4}{x+4}
|
asymptotes of f(x)=(2x-6)/(-x+4)
|
asymptotes\:f(x)=\frac{2x-6}{-x+4}
|
intercepts of f(x)=x^2+y=36
|
intercepts\:f(x)=x^{2}+y=36
|
domain of f(x)=sqrt(3-5x)
|
domain\:f(x)=\sqrt{3-5x}
|
domain of f(x)=4x-10
|
domain\:f(x)=4x-10
|
domain of f(x)=x+10
|
domain\:f(x)=x+10
|
inverse of f(x)=x^2+3x+1
|
inverse\:f(x)=x^{2}+3x+1
|
periodicity of f(x)=y=-5cos((pi)/8 x)+3
|
periodicity\:f(x)=y=-5\cos(\frac{\pi}{8}x)+3
|
asymptotes of e^{x-5}
|
asymptotes\:e^{x-5}
|
domain of f(x)=(4x)/(x^2-9)
|
domain\:f(x)=\frac{4x}{x^{2}-9}
|
range of f(x)=-1/2 x^2+9x-3
|
range\:f(x)=-\frac{1}{2}x^{2}+9x-3
|
inverse of F(x)=2+sqrt(x-7)
|
inverse\:F(x)=2+\sqrt{x-7}
|
inverse of f(x)=\sqrt[3]{x^5+9}
|
inverse\:f(x)=\sqrt[3]{x^{5}+9}
|
amplitude of cos((theta)/4+(pi)/4)-2
|
amplitude\:\cos(\frac{\theta}{4}+\frac{\pi}{4})-2
|
range of f(x)=x^2+2x+1
|
range\:f(x)=x^{2}+2x+1
|
range of r(x)= 1/(x-2)
|
range\:r(x)=\frac{1}{x-2}
|
inflection points of x^{2/3}(1-x)
|
inflection\:points\:x^{\frac{2}{3}}(1-x)
|
domain of f(x)= 1/(x^2-9)
|
domain\:f(x)=\frac{1}{x^{2}-9}
|
amplitude of-4-2cos(5x)
|
amplitude\:-4-2\cos(5x)
|
inverse of f(x)=x^{1/3}-9
|
inverse\:f(x)=x^{\frac{1}{3}}-9
|
parity f(x)=(4x^2-5)/(2x^3+x)
|
parity\:f(x)=\frac{4x^{2}-5}{2x^{3}+x}
|
perpendicular 4x+3y=9
|
perpendicular\:4x+3y=9
|
distance (1,1)(3,4)
|
distance\:(1,1)(3,4)
|
critical points of f(x)=x^4-2x^2+2
|
critical\:points\:f(x)=x^{4}-2x^{2}+2
|
domain of 5(x+4)^2+2
|
domain\:5(x+4)^{2}+2
|
amplitude of-cos(x)
|
amplitude\:-\cos(x)
|