domain of f(x)=sqrt((x+9)(x+8))
|
domain\:f(x)=\sqrt{(x+9)(x+8)}
|
inverse of f(x)=3x+8
|
inverse\:f(x)=3x+8
|
intercepts of f(x)=2x-5y=6
|
intercepts\:f(x)=2x-5y=6
|
inflection points of-x^3+6x^2-16
|
inflection\:points\:-x^{3}+6x^{2}-16
|
asymptotes of f(x)=(4x^2+6x+1)/(2x+1)
|
asymptotes\:f(x)=\frac{4x^{2}+6x+1}{2x+1}
|
asymptotes of f(x)=(x^2+2x-3)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{2}+2x-3}{x^{2}-1}
|
line m= 5/9 ,\at (-2,8)
|
line\:m=\frac{5}{9},\at\:(-2,8)
|
inverse of f(x)=2x-4/3
|
inverse\:f(x)=2x-\frac{4}{3}
|
inverse of f(x)=sqrt(9-x^2),0<= x<= 3
|
inverse\:f(x)=\sqrt{9-x^{2}},0\le\:x\le\:3
|
parity f(x)=x^2-4
|
parity\:f(x)=x^{2}-4
|
domain of (4x)/(x+6)
|
domain\:\frac{4x}{x+6}
|
y=-x-2
|
y=-x-2
|
intercepts of f(x)=9x^2+24x+16
|
intercepts\:f(x)=9x^{2}+24x+16
|
inverse of f(x)=8(x+9/2)
|
inverse\:f(x)=8(x+\frac{9}{2})
|
inverse of a
|
inverse\:a
|
domain of , 1/(sqrt(x)+9)
|
domain\:,\frac{1}{\sqrt{x}+9}
|
domain of f(x)=sqrt(x)-3
|
domain\:f(x)=\sqrt{x}-3
|
inflection points of (e^x)/(x^2)
|
inflection\:points\:\frac{e^{x}}{x^{2}}
|
domain of 3^{-x}
|
domain\:3^{-x}
|
inverse of f(x)=-2x^3+1
|
inverse\:f(x)=-2x^{3}+1
|
asymptotes of f(x)=(6x)/(x^2+2)
|
asymptotes\:f(x)=\frac{6x}{x^{2}+2}
|
extreme points of f(x)=x^3-5x^2+3x+1
|
extreme\:points\:f(x)=x^{3}-5x^{2}+3x+1
|
parity g(x)=tan(x)+sec(x)-ex
|
parity\:g(x)=\tan(x)+\sec(x)-ex
|
inverse of y=x+1
|
inverse\:y=x+1
|
inflection points of 5sin(x)+5cos(x)
|
inflection\:points\:5\sin(x)+5\cos(x)
|
inflection points of f(x)=x^3+3x^2-4
|
inflection\:points\:f(x)=x^{3}+3x^{2}-4
|
intercepts of f(x)= 2/3 x+6
|
intercepts\:f(x)=\frac{2}{3}x+6
|
domain of (x^2)/(x^2-4)
|
domain\:\frac{x^{2}}{x^{2}-4}
|
inverse of f(x)=(-5x-2)/(3-x)
|
inverse\:f(x)=\frac{-5x-2}{3-x}
|
inverse of ln(e^x-1)-ln(2)-1
|
inverse\:\ln(e^{x}-1)-\ln(2)-1
|
midpoint (-2,3)(1,6)
|
midpoint\:(-2,3)(1,6)
|
critical points of 6sin(x)
|
critical\:points\:6\sin(x)
|
inverse of f(x)=5-9x
|
inverse\:f(x)=5-9x
|
line y=2x+5
|
line\:y=2x+5
|
inverse of x+1
|
inverse\:x+1
|
slope intercept of y= 3/2 x+8
|
slope\:intercept\:y=\frac{3}{2}x+8
|
amplitude of cos(x)-5
|
amplitude\:\cos(x)-5
|
domain of 6
|
domain\:6
|
midpoint (2,5)(-1,11)
|
midpoint\:(2,5)(-1,11)
|
domain of f(x)=(3x^2)/(x^2-1)
|
domain\:f(x)=\frac{3x^{2}}{x^{2}-1}
|
domain of f(x)=2x-74
|
domain\:f(x)=2x-74
|
slope intercept of 9x-12y=-19
|
slope\:intercept\:9x-12y=-19
|
intercepts of f(x)=x^4-6x^2
|
intercepts\:f(x)=x^{4}-6x^{2}
|
amplitude of-5sin(2x+6)-1
|
amplitude\:-5\sin(2x+6)-1
|
critical points of x+1/(x^2)
|
critical\:points\:x+\frac{1}{x^{2}}
|
inverse of f(x)=x^2-3x-4
|
inverse\:f(x)=x^{2}-3x-4
|
symmetry (x^2-1)/x
|
symmetry\:\frac{x^{2}-1}{x}
|
perpendicular y=4x+c
|
perpendicular\:y=4x+c
|
asymptotes of f(x)=(9x^2+12x)/(9x+12)
|
asymptotes\:f(x)=\frac{9x^{2}+12x}{9x+12}
|
midpoint (5,8)(-1,6)
|
midpoint\:(5,8)(-1,6)
|
parity f(x)=-x^2+4x
|
parity\:f(x)=-x^{2}+4x
|
inverse of f(x)=(x^3-1)^7
|
inverse\:f(x)=(x^{3}-1)^{7}
|
domain of (3x^2-13x+4)/(2x^2+7x-15)
|
domain\:\frac{3x^{2}-13x+4}{2x^{2}+7x-15}
|
critical points of x^{1/3}-x^{(-2)/3}
|
critical\:points\:x^{\frac{1}{3}}-x^{\frac{-2}{3}}
|
domain of 8/((x-1)(x+2))
|
domain\:\frac{8}{(x-1)(x+2)}
|
inflection points of x/(x^2+4)
|
inflection\:points\:\frac{x}{x^{2}+4}
|
periodicity of y=tan(x)
|
periodicity\:y=\tan(x)
|
distance (8,10)(-2,14)
|
distance\:(8,10)(-2,14)
|
inverse of f(x)=x^2-2x
|
inverse\:f(x)=x^{2}-2x
|
asymptotes of x
|
asymptotes\:x
|
domain of (2x)/(x^2+81)
|
domain\:\frac{2x}{x^{2}+81}
|
parallel y=2x+7(-1,1)
|
parallel\:y=2x+7(-1,1)
|
range of (6x+7)/(x+6)
|
range\:\frac{6x+7}{x+6}
|
parallel 3x-2y=12
|
parallel\:3x-2y=12
|
asymptotes of f(x)=((x^2+2))/(5x-2x^2)
|
asymptotes\:f(x)=\frac{(x^{2}+2)}{5x-2x^{2}}
|
asymptotes of f(x)=(x^2-5x-1)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-5x-1}{x-3}
|
inverse of f(x)=(x+1)/(x+6)
|
inverse\:f(x)=\frac{x+1}{x+6}
|
inverse of f(x)= 3/(x-1)+4
|
inverse\:f(x)=\frac{3}{x-1}+4
|
domain of f(x)=8+(64)/x
|
domain\:f(x)=8+\frac{64}{x}
|
range of y=\sqrt[5]{x/7}
|
range\:y=\sqrt[5]{\frac{x}{7}}
|
asymptotes of log_{4}(x-3)
|
asymptotes\:\log_{4}(x-3)
|
slope of (5-11),(-9,17)
|
slope\:(5-11),(-9,17)
|
asymptotes of f(x)=(8x)/(x^2-4)
|
asymptotes\:f(x)=\frac{8x}{x^{2}-4}
|
f=sin(x)
|
f=\sin(x)
|
asymptotes of f(x)= 1/((x-3))
|
asymptotes\:f(x)=\frac{1}{(x-3)}
|
domain of f(x)=-3x^2-12x-17
|
domain\:f(x)=-3x^{2}-12x-17
|
intercepts of f(x)=-x^2+4x-7
|
intercepts\:f(x)=-x^{2}+4x-7
|
domain of f(x)=(2/x)/(2/x+2)
|
domain\:f(x)=\frac{\frac{2}{x}}{\frac{2}{x}+2}
|
range of f(x)=x^2-x
|
range\:f(x)=x^{2}-x
|
inverse of y=log_{7}(2x-5)+9
|
inverse\:y=\log_{7}(2x-5)+9
|
inverse of (-3x-3)/(x-1)
|
inverse\:\frac{-3x-3}{x-1}
|
range of f(x)= x/(-8x+3)
|
range\:f(x)=\frac{x}{-8x+3}
|
domain of F(t)= t/(|t|)
|
domain\:F(t)=\frac{t}{|t|}
|
line (0,0)(2,2)
|
line\:(0,0)(2,2)
|
intercepts of (-5x)/(4x+10)
|
intercepts\:\frac{-5x}{4x+10}
|
line (1,4)(2,2)
|
line\:(1,4)(2,2)
|
parity x^2-2x
|
parity\:x^{2}-2x
|
domain of g(x)=(sqrt(x))/(8x^2+7x-1)
|
domain\:g(x)=\frac{\sqrt{x}}{8x^{2}+7x-1}
|
domain of f(x)=sqrt(2/(x-4))
|
domain\:f(x)=\sqrt{\frac{2}{x-4}}
|
asymptotes of f(x)= 6/(x+1)+1
|
asymptotes\:f(x)=\frac{6}{x+1}+1
|
inverse of f(x)=x^7-7
|
inverse\:f(x)=x^{7}-7
|
inflection points of f(x)=-6/(1+x^2)
|
inflection\:points\:f(x)=-\frac{6}{1+x^{2}}
|
extreme points of y=(2-x)^3
|
extreme\:points\:y=(2-x)^{3}
|
asymptotes of f(x)=(x-2)/(-2x+8)
|
asymptotes\:f(x)=\frac{x-2}{-2x+8}
|
domain of f(x)=sqrt((x-3)/(9x-x^3))
|
domain\:f(x)=\sqrt{\frac{x-3}{9x-x^{3}}}
|
domain of x^2-5x-24
|
domain\:x^{2}-5x-24
|
domain of y=-x^2-3
|
domain\:y=-x^{2}-3
|
3x^3
|
3x^{3}
|
symmetry (e^x)/x
|
symmetry\:\frac{e^{x}}{x}
|
critical points of y=-3/4 x-5
|
critical\:points\:y=-\frac{3}{4}x-5
|