asymptotes of f(x)=(x^4)/(x^2+6)
|
asymptotes\:f(x)=\frac{x^{4}}{x^{2}+6}
|
midpoint (2,5)(-4,7)
|
midpoint\:(2,5)(-4,7)
|
domain of f(x)=(x+6)/(sqrt(-2-x))
|
domain\:f(x)=\frac{x+6}{\sqrt{-2-x}}
|
domain of-2x^2+12x-14
|
domain\:-2x^{2}+12x-14
|
domain of f(x)=(-2x+35)/(x^2+7x)
|
domain\:f(x)=\frac{-2x+35}{x^{2}+7x}
|
parity (0.9e^x)/(tan(x))
|
parity\:\frac{0.9e^{x}}{\tan(x)}
|
extreme points of f(x)=x^2+7x+9
|
extreme\:points\:f(x)=x^{2}+7x+9
|
asymptotes of f(x)=(3x^2+2)/(x^2-4)
|
asymptotes\:f(x)=\frac{3x^{2}+2}{x^{2}-4}
|
domain of (x+1)/(x^2-x-6)
|
domain\:\frac{x+1}{x^{2}-x-6}
|
domain of ((3x^3-x^2-27x+9))/(x^2+4x+3)
|
domain\:\frac{(3x^{3}-x^{2}-27x+9)}{x^{2}+4x+3}
|
intercepts of f(x)=16-x^2
|
intercepts\:f(x)=16-x^{2}
|
parallel x-y=-1
|
parallel\:x-y=-1
|
inverse of f(x)=10^{x/2}
|
inverse\:f(x)=10^{\frac{x}{2}}
|
inverse of f(x)=log_{7}(x)
|
inverse\:f(x)=\log_{7}(x)
|
midpoint (7,4)(13,19)
|
midpoint\:(7,4)(13,19)
|
inverse of (2x+5)/(x-3)
|
inverse\:\frac{2x+5}{x-3}
|
inverse of f(x)=3-2x^3
|
inverse\:f(x)=3-2x^{3}
|
symmetry-x^3-x
|
symmetry\:-x^{3}-x
|
asymptotes of f(x)= x/(x+1)
|
asymptotes\:f(x)=\frac{x}{x+1}
|
domain of f(x)=(2x+8)/(-3x-12)
|
domain\:f(x)=\frac{2x+8}{-3x-12}
|
inverse of f(x)=(10+3x)/2
|
inverse\:f(x)=\frac{10+3x}{2}
|
domain of f(x)=3sqrt(x-9)
|
domain\:f(x)=3\sqrt{x-9}
|
asymptotes of f(x)=2cot(1/2 x)
|
asymptotes\:f(x)=2\cot(\frac{1}{2}x)
|
inverse of f(x)= 1/(x+4)
|
inverse\:f(x)=\frac{1}{x+4}
|
parallel y= 3/2 x+3(1,-2)
|
parallel\:y=\frac{3}{2}x+3(1,-2)
|
inverse of f(x)=(x+16)/(x-12)
|
inverse\:f(x)=\frac{x+16}{x-12}
|
inflection points of 3x^4+8x^3
|
inflection\:points\:3x^{4}+8x^{3}
|
symmetry y=-3x^2+x+5
|
symmetry\:y=-3x^{2}+x+5
|
inverse of f(x)=(5x+4)/(x+5)
|
inverse\:f(x)=\frac{5x+4}{x+5}
|
inverse of f(x)=(-2x+10)/3
|
inverse\:f(x)=\frac{-2x+10}{3}
|
midpoint (2,6)(4,10)
|
midpoint\:(2,6)(4,10)
|
extreme points of f(x)=3x^3-3x^2-3x+7
|
extreme\:points\:f(x)=3x^{3}-3x^{2}-3x+7
|
domain of f(x)=x^2-6x+7
|
domain\:f(x)=x^{2}-6x+7
|
inverse of f(x)=(x+4)/(x+10)
|
inverse\:f(x)=\frac{x+4}{x+10}
|
midpoint (7,1)(3,10)
|
midpoint\:(7,1)(3,10)
|
inverse of f(x)=(x+1)/(3-7x)
|
inverse\:f(x)=\frac{x+1}{3-7x}
|
domain of f(x)=(x+2)^2
|
domain\:f(x)=(x+2)^{2}
|
domain of f(x)=9x^7+21x^6-30x^5-19
|
domain\:f(x)=9x^{7}+21x^{6}-30x^{5}-19
|
periodicity of-3sin(-2x+(pi)/2)
|
periodicity\:-3\sin(-2x+\frac{\pi}{2})
|
intercepts of f(x)=-3(x+1)^2+4
|
intercepts\:f(x)=-3(x+1)^{2}+4
|
domain of f(x)=sqrt(5x)+4x-9
|
domain\:f(x)=\sqrt{5x}+4x-9
|
domain of (2x^3-x^2-2x+1)/(x^2+3x+2)
|
domain\:\frac{2x^{3}-x^{2}-2x+1}{x^{2}+3x+2}
|
domain of f(x)=sqrt((10+x)/(-6+2x))
|
domain\:f(x)=\sqrt{\frac{10+x}{-6+2x}}
|
range of x^2-2x-3
|
range\:x^{2}-2x-3
|
amplitude of 1/9 sin(7x+(pi)/2)
|
amplitude\:\frac{1}{9}\sin(7x+\frac{\pi}{2})
|
inverse of (2x+3)/(5x+4)
|
inverse\:\frac{2x+3}{5x+4}
|
f(x)=x^2-3x,g(x)=sqrt(x-1),g\circ f
|
f(x)=x^{2}-3x,g(x)=\sqrt{x-1},g\circ\:f
|
intercepts of y=x-4
|
intercepts\:y=x-4
|
asymptotes of f(x)=(x^2+x-9)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}+x-9}{x-2}
|
domain of f(x)=(3x+5)/(2x-3)
|
domain\:f(x)=\frac{3x+5}{2x-3}
|
critical points of x^4-12x^3+48x^2-64x
|
critical\:points\:x^{4}-12x^{3}+48x^{2}-64x
|
intercepts of f(x)=(x^2+6x-7)/(x^2+2x-3)
|
intercepts\:f(x)=\frac{x^{2}+6x-7}{x^{2}+2x-3}
|
perpendicular y=2x
|
perpendicular\:y=2x
|
domain of (2x^2-3)/(x+2)
|
domain\:\frac{2x^{2}-3}{x+2}
|
slope intercept of 6x+10y=-80
|
slope\:intercept\:6x+10y=-80
|
range of f(x)=3x^2
|
range\:f(x)=3x^{2}
|
inverse of 16-8x+x^2
|
inverse\:16-8x+x^{2}
|
range of x^2+6
|
range\:x^{2}+6
|
asymptotes of (x(x-5))/(x^2-9)
|
asymptotes\:\frac{x(x-5)}{x^{2}-9}
|
inverse of f(x)=(2x+5)/7
|
inverse\:f(x)=\frac{2x+5}{7}
|
range of f(x)= x/((x-1)(x-2))
|
range\:f(x)=\frac{x}{(x-1)(x-2)}
|
extreme points of y=(x^3)/((x-1)^2)
|
extreme\:points\:y=\frac{x^{3}}{(x-1)^{2}}
|
range of f(x)=(3x^2)/(x^2-1)
|
range\:f(x)=\frac{3x^{2}}{x^{2}-1}
|
domain of f(x)=sqrt(9x-8)
|
domain\:f(x)=\sqrt{9x-8}
|
monotone intervals 4-(x-2)^2
|
monotone\:intervals\:4-(x-2)^{2}
|
extreme points of f(x)=x^3-7x^2+15x+9
|
extreme\:points\:f(x)=x^{3}-7x^{2}+15x+9
|
asymptotes of f(x)=(x-4)/(x^2+13x+36)
|
asymptotes\:f(x)=\frac{x-4}{x^{2}+13x+36}
|
intercepts of f(x)=-4x+7y=3
|
intercepts\:f(x)=-4x+7y=3
|
domain of (x^2)/(sqrt(x))
|
domain\:\frac{x^{2}}{\sqrt{x}}
|
range of f(x)=4-sqrt(25-x^2)
|
range\:f(x)=4-\sqrt{25-x^{2}}
|
domain of f(x)=-6x+5
|
domain\:f(x)=-6x+5
|
extreme points of f(x)=-3x^2-2x^3
|
extreme\:points\:f(x)=-3x^{2}-2x^{3}
|
asymptotes of ((x^3+1))/(x^2+4x)
|
asymptotes\:\frac{(x^{3}+1)}{x^{2}+4x}
|
intercepts of ((x^2+5x+4))/(x-2)
|
intercepts\:\frac{(x^{2}+5x+4)}{x-2}
|
midpoint (2,-1)(10,7)
|
midpoint\:(2,-1)(10,7)
|
inflection points of (e^x)/(1+x)
|
inflection\:points\:\frac{e^{x}}{1+x}
|
asymptotes of f(x)=(x^2+5x-6)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}+5x-6}{x+3}
|
domain of f(x)=2x^2-x-1
|
domain\:f(x)=2x^{2}-x-1
|
extreme points of f(x)=x^2e^{-x}
|
extreme\:points\:f(x)=x^{2}e^{-x}
|
inverse of y=13x+2
|
inverse\:y=13x+2
|
intercepts of (2x(x-1)^2)/((x+1)^3)
|
intercepts\:\frac{2x(x-1)^{2}}{(x+1)^{3}}
|
perpendicular y=4x-8
|
perpendicular\:y=4x-8
|
distance (1,3)(4,-3)
|
distance\:(1,3)(4,-3)
|
domain of f(x)= 1/(x^2+1)-1/(x^2-1)
|
domain\:f(x)=\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1}
|
monotone intervals f(x)=((x-3)^2)/(x^2)
|
monotone\:intervals\:f(x)=\frac{(x-3)^{2}}{x^{2}}
|
inverse of f(x)=x^{1/2}-7
|
inverse\:f(x)=x^{\frac{1}{2}}-7
|
periodicity of f(x)=-4cos(2/5 x)-2
|
periodicity\:f(x)=-4\cos(\frac{2}{5}x)-2
|
inverse of f(x)=x+12
|
inverse\:f(x)=x+12
|
domain of 3x^3+2
|
domain\:3x^{3}+2
|
periodicity of y=5cos(1/4 x)
|
periodicity\:y=5\cos(\frac{1}{4}x)
|
asymptotes of y=1.5ln(x+5)
|
asymptotes\:y=1.5\ln(x+5)
|
slope of 2x-4y-12=0
|
slope\:2x-4y-12=0
|
extreme points of f(x)=-x^3+3x^2-6
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-6
|
domain of f(x)= 1/(x-4)+1/(6-x)
|
domain\:f(x)=\frac{1}{x-4}+\frac{1}{6-x}
|
extreme points of f(x)=-x^3-3x^4
|
extreme\:points\:f(x)=-x^{3}-3x^{4}
|
slope intercept of 2x+y=12
|
slope\:intercept\:2x+y=12
|
domain of f(x)=((x+1))/(x^2-9)
|
domain\:f(x)=\frac{(x+1)}{x^{2}-9}
|
inverse of f(x)=4+sqrt(4+x)
|
inverse\:f(x)=4+\sqrt{4+x}
|
intercepts of f(x)=-(4x+10y)=-9
|
intercepts\:f(x)=-(4x+10y)=-9
|
domain of f(x)=(3x-8)/(x^2-9x+20)
|
domain\:f(x)=(3x-8)/(x^{2}-9x+20)
|