intercepts of y=2x-2
|
intercepts\:y=2x-2
|
line (5,4)(2,4)
|
line\:(5,4)(2,4)
|
domain of f(x)=(x-5)/(x^2+1)
|
domain\:f(x)=\frac{x-5}{x^{2}+1}
|
inflection points of f(x)=(2x)/(x^2-1)
|
inflection\:points\:f(x)=\frac{2x}{x^{2}-1}
|
domain of f(x)=(sqrt(-5-x))/(5+x)
|
domain\:f(x)=\frac{\sqrt{-5-x}}{5+x}
|
periodicity of f(x)=5cos(6pi n)
|
periodicity\:f(x)=5\cos(6\pi\:n)
|
domain of-2cos(3x)
|
domain\:-2\cos(3x)
|
range of arccos(x)
|
range\:\arccos(x)
|
inverse of f(x)=-1/(4x)
|
inverse\:f(x)=-\frac{1}{4x}
|
critical points of f(x)=x+1/(x^2)
|
critical\:points\:f(x)=x+\frac{1}{x^{2}}
|
asymptotes of f(x)=(e^{2x}) 1/(1-x)
|
asymptotes\:f(x)=(e^{2x})\frac{1}{1-x}
|
asymptotes of f(x)=((x-3))/((x+3))
|
asymptotes\:f(x)=\frac{(x-3)}{(x+3)}
|
range of (x-1)/3
|
range\:\frac{x-1}{3}
|
extreme points of x^3-3x+4
|
extreme\:points\:x^{3}-3x+4
|
intercepts of f(x)=y=-7x+3
|
intercepts\:f(x)=y=-7x+3
|
critical points of 3cot^2(x)
|
critical\:points\:3\cot^{2}(x)
|
y=x-3
|
y=x-3
|
inflection points of f(x)=4x^3-6x^2+6x-9
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+6x-9
|
slope intercept of y=5
|
slope\:intercept\:y=5
|
inverse of (ln(x)+1)/(ln(x)-1)
|
inverse\:\frac{\ln(x)+1}{\ln(x)-1}
|
domain of f(x)=(-x)^{1/2}
|
domain\:f(x)=(-x)^{\frac{1}{2}}
|
midpoint (-7,-7)(-5,5)
|
midpoint\:(-7,-7)(-5,5)
|
f(x)=x^2+3x
|
f(x)=x^{2}+3x
|
range of 46
|
range\:46
|
domain of 1/(x^3)
|
domain\:\frac{1}{x^{3}}
|
inverse of f(x)=(x+9)/(7-4x)
|
inverse\:f(x)=\frac{x+9}{7-4x}
|
inflection points of f(x)=-9x^4-12x^3
|
inflection\:points\:f(x)=-9x^{4}-12x^{3}
|
domain of f(x)= 1/(5x-20)
|
domain\:f(x)=\frac{1}{5x-20}
|
domain of (4x)/(7x-1)
|
domain\:\frac{4x}{7x-1}
|
inverse of f(x)=-2/3 x+1
|
inverse\:f(x)=-\frac{2}{3}x+1
|
inverse of f(x)=\sqrt[3]{x-2}
|
inverse\:f(x)=\sqrt[3]{x-2}
|
slope of y=7x-8
|
slope\:y=7x-8
|
inverse of f(x)=(-3x+5)/(7x+4)
|
inverse\:f(x)=\frac{-3x+5}{7x+4}
|
slope of x/(x^2-15),x=4
|
slope\:\frac{x}{x^{2}-15},x=4
|
extreme points of f(x)= 1/x+2ln(x+3)
|
extreme\:points\:f(x)=\frac{1}{x}+2\ln(x+3)
|
domain of 1/(x-6)
|
domain\:\frac{1}{x-6}
|
domain of x-8
|
domain\:x-8
|
inverse of \sqrt[3]{x+2}
|
inverse\:\sqrt[3]{x+2}
|
domain of f(x)=sqrt(4-3x)
|
domain\:f(x)=\sqrt{4-3x}
|
parity p(x)=tan(x)+1/x
|
parity\:p(x)=\tan(x)+\frac{1}{x}
|
domain of f(x)=(x^2-1)/5
|
domain\:f(x)=\frac{x^{2}-1}{5}
|
inverse of 1.204e^{8.8448x}
|
inverse\:1.204e^{8.8448x}
|
line (3,0),(0,-4)
|
line\:(3,0),(0,-4)
|
domain of x+7
|
domain\:x+7
|
domain of y=(1/2)^x
|
domain\:y=(\frac{1}{2})^{x}
|
critical points of tan(x)
|
critical\:points\:\tan(x)
|
inflection points of f(x)=-5x^3-30x^2
|
inflection\:points\:f(x)=-5x^{3}-30x^{2}
|
range of f(x)=3-x
|
range\:f(x)=3-x
|
range of f(x)=x^2+8x+15
|
range\:f(x)=x^{2}+8x+15
|
periodicity of f(x)=4-3sin(2/5 (x+1))
|
periodicity\:f(x)=4-3\sin(\frac{2}{5}(x+1))
|
amplitude of-cos(2(theta-(pi)/4))
|
amplitude\:-\cos(2(\theta-\frac{\pi}{4}))
|
critical points of f(x)=3x^5-20x^3
|
critical\:points\:f(x)=3x^{5}-20x^{3}
|
domain of f(x)=(8-x)/(x^2-7x)
|
domain\:f(x)=\frac{8-x}{x^{2}-7x}
|
inverse of f(x)=7x
|
inverse\:f(x)=7x
|
line (1,2),(1,4)
|
line\:(1,2),(1,4)
|
domain of f(x)=x^3-2x^2+x+13
|
domain\:f(x)=x^{3}-2x^{2}+x+13
|
slope intercept of y=-1x+2
|
slope\:intercept\:y=-1x+2
|
inverse of f(x)=4x-1
|
inverse\:f(x)=4x-1
|
domain of f(x)=(2x+7)/(x^2-7x+10)
|
domain\:f(x)=\frac{2x+7}{x^{2}-7x+10}
|
domain of f(x)=(4x)/(x-3)
|
domain\:f(x)=\frac{4x}{x-3}
|
f(x)=4x-5
|
f(x)=4x-5
|
range of f(x)=-sqrt(49-x^2)
|
range\:f(x)=-\sqrt{49-x^{2}}
|
midpoint (3,-6)(7,10)
|
midpoint\:(3,-6)(7,10)
|
critical points of \sqrt[5]{x}(x-2)
|
critical\:points\:\sqrt[5]{x}(x-2)
|
inverse of f(x)=(7-x)^{1/4}
|
inverse\:f(x)=(7-x)^{\frac{1}{4}}
|
range of 2x^2-x+4
|
range\:2x^{2}-x+4
|
domain of sqrt(x)+sqrt(7-x)
|
domain\:\sqrt{x}+\sqrt{7-x}
|
inverse of f(x)=(x^5)/6+7
|
inverse\:f(x)=\frac{x^{5}}{6}+7
|
extreme points of y=(x-3)^2(x+4)^2
|
extreme\:points\:y=(x-3)^{2}(x+4)^{2}
|
domain of f(x)=sqrt(\sqrt{x-4)-4}
|
domain\:f(x)=\sqrt{\sqrt{x-4}-4}
|
asymptotes of f(x)=(x^2-x)/(x^2-3x+2)
|
asymptotes\:f(x)=\frac{x^{2}-x}{x^{2}-3x+2}
|
slope of 6x+3y=2
|
slope\:6x+3y=2
|
asymptotes of f(x)=(2x-8)/(x^2-2x-3)
|
asymptotes\:f(x)=\frac{2x-8}{x^{2}-2x-3}
|
domain of f(x)=\sqrt[3]{x+8}
|
domain\:f(x)=\sqrt[3]{x+8}
|
parallel y=-6x+8,\at (7,-3)
|
parallel\:y=-6x+8,\at\:(7,-3)
|
domain of f(x)= 1/(\sqrt[4]{x^2-8x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-8x}}
|
inverse of f(x)=(x+1)/(x^2+4)
|
inverse\:f(x)=\frac{x+1}{x^{2}+4}
|
extreme points of f(x)=x^{(1/x)}
|
extreme\:points\:f(x)=x^{(\frac{1}{x})}
|
inflection points of f(x)=e^{-x}
|
inflection\:points\:f(x)=e^{-x}
|
critical points of f(x)= x/(x^2-4x+3)
|
critical\:points\:f(x)=\frac{x}{x^{2}-4x+3}
|
inverse of h(x)=(4x)/(7x-3)
|
inverse\:h(x)=\frac{4x}{7x-3}
|
inverse of 5-8e^x
|
inverse\:5-8e^{x}
|
periodicity of y=9sin(14x)
|
periodicity\:y=9\sin(14x)
|
range of-sqrt(x)+3
|
range\:-\sqrt{x}+3
|
domain of (x^2-4)/(x-3)
|
domain\:\frac{x^{2}-4}{x-3}
|
inverse of f(x)=3(x+2)
|
inverse\:f(x)=3(x+2)
|
extreme points of f(x)=-3/(x^2)
|
extreme\:points\:f(x)=-\frac{3}{x^{2}}
|
range of-log_{2}(3x-5)
|
range\:-\log_{2}(3x-5)
|
range of f(x)=(-5)/(x^2+1)
|
range\:f(x)=\frac{-5}{x^{2}+1}
|
domain of f(x)=(sqrt(x^2-4))
|
domain\:f(x)=(\sqrt{x^{2}-4})
|
midpoint (-2,4)(10,13)
|
midpoint\:(-2,4)(10,13)
|
asymptotes of f(x)=(2x-7)/(-x+2)
|
asymptotes\:f(x)=\frac{2x-7}{-x+2}
|
asymptotes of f(x)=(6e^x)/(e^x-3)
|
asymptotes\:f(x)=\frac{6e^{x}}{e^{x}-3}
|
range of f(x)=c
|
range\:f(x)=c
|
domain of (e^x-e^{-x})/2
|
domain\:\frac{e^{x}-e^{-x}}{2}
|
inverse of f(x)=(8x+10)^5
|
inverse\:f(x)=(8x+10)^{5}
|
domain of f(x)=sqrt(7-7x)
|
domain\:f(x)=\sqrt{7-7x}
|
asymptotes of f(x)=(3e^x)/(e^x-3)
|
asymptotes\:f(x)=\frac{3e^{x}}{e^{x}-3}
|
inverse of 1/(3x)
|
inverse\:\frac{1}{3x}
|
extreme points of f(x)=(x+3)^{2/3}
|
extreme\:points\:f(x)=(x+3)^{\frac{2}{3}}
|