f(x)=2x^3-3x^2-12x-1
|
f(x)=2x^{3}-3x^{2}-12x-1
|
f(x)=3x^2-6x+11
|
f(x)=3x^{2}-6x+11
|
f(x)=xe^x-2e^x+1
|
f(x)=xe^{x}-2e^{x}+1
|
y=(64)/(x^2+16)
|
y=\frac{64}{x^{2}+16}
|
f(t)=tcosh(2t)sinh(3t)
|
f(t)=t\cosh(2t)\sinh(3t)
|
f(x)=6x^2-2x-1
|
f(x)=6x^{2}-2x-1
|
f(x)=x^4+8x^3-x^2-62x+36
|
f(x)=x^{4}+8x^{3}-x^{2}-62x+36
|
y=5x^2-2x-2
|
y=5x^{2}-2x-2
|
midpoint (-3,4)(1,2)
|
midpoint\:(-3,4)(1,2)
|
f(x)=(x^2-36)/(x+6)
|
f(x)=\frac{x^{2}-36}{x+6}
|
f(x)=(x^3-3x)/(x^2+1)
|
f(x)=\frac{x^{3}-3x}{x^{2}+1}
|
f(h)=(sqrt(1+h)-1)/h
|
f(h)=\frac{\sqrt{1+h}-1}{h}
|
f(z)=z^2-5z-4
|
f(z)=z^{2}-5z-4
|
f(x)=(x^2+2x-3)/(x^2-1)
|
f(x)=\frac{x^{2}+2x-3}{x^{2}-1}
|
f(x)=(10)/(x^2+1)
|
f(x)=\frac{10}{x^{2}+1}
|
P(x)=x^3+2x^2-x-2
|
P(x)=x^{3}+2x^{2}-x-2
|
f(s)=s^2-3
|
f(s)=s^{2}-3
|
f(x)=-2^{x+3}-5
|
f(x)=-2^{x+3}-5
|
f(x)=2cos(x+pi)
|
f(x)=2\cos(x+π)
|
domain of 8/(t^2-81)
|
domain\:\frac{8}{t^{2}-81}
|
y=e^{x^2+3x}+20
|
y=e^{x^{2}+3x}+20
|
f(x)=(x-5)^2-1
|
f(x)=(x-5)^{2}-1
|
f(x)=sqrt(1-\sqrt{4-x^2)}
|
f(x)=\sqrt{1-\sqrt{4-x^{2}}}
|
y=(1/2)^x-2
|
y=(\frac{1}{2})^{x}-2
|
f(x)=(3x-2x^2)3
|
f(x)=(3x-2x^{2})3
|
f(x)=(-x)/(x+5)
|
f(x)=\frac{-x}{x+5}
|
f(x)=sqrt(5-2x)+4
|
f(x)=\sqrt{5-2x}+4
|
f(x)=log_{3}(4x-1)+1
|
f(x)=\log_{3}(4x-1)+1
|
f(x)=(x^2-7/3 x+13/9)e^{3x}
|
f(x)=(x^{2}-\frac{7}{3}x+\frac{13}{9})e^{3x}
|
f(x)= 4/5 sin(2x-(4pi)/3)
|
f(x)=\frac{4}{5}\sin(2x-\frac{4π}{3})
|
inflection points of x^3-9x^2+27x+3
|
inflection\:points\:x^{3}-9x^{2}+27x+3
|
y={cos(x):x>0,x^2+3:x<= 0}
|
y=\left\{\cos(x):x>0,x^{2}+3:x\le\:0\right\}
|
y=(2/(1+x))^5
|
y=(\frac{2}{1+x})^{5}
|
f(x)=sqrt(x^2-8)
|
f(x)=\sqrt{x^{2}-8}
|
y=-x^3+4x
|
y=-x^{3}+4x
|
y=2sqrt(6-x),3<x<6
|
y=2\sqrt{6-x},3<x<6
|
f(x)=5x^4-20x^3+9
|
f(x)=5x^{4}-20x^{3}+9
|
h(x)=1
|
h(x)=1
|
f(x)=x^3-3x^2+6x-2
|
f(x)=x^{3}-3x^{2}+6x-2
|
y=e^{2x}+1
|
y=e^{2x}+1
|
f(x)=(x-8)(x+9)
|
f(x)=(x-8)(x+9)
|
inflection points of f(x)=8-3x^2-x^3
|
inflection\:points\:f(x)=8-3x^{2}-x^{3}
|
f(A)=0.006A^2-0.02A+120
|
f(A)=0.006A^{2}-0.02A+120
|
y=sqrt(sin(2x))
|
y=\sqrt{\sin(2x)}
|
f(m)=m^2+5m-17
|
f(m)=m^{2}+5m-17
|
y=-0.05x^2+300x+2000
|
y=-0.05x^{2}+300x+2000
|
f(x)={2x+4:x>0,4-2x:x<0}
|
f(x)=\left\{2x+4:x>0,4-2x:x<0\right\}
|
f(x)=2x^3-3x^2-12x+18
|
f(x)=2x^{3}-3x^{2}-12x+18
|
f(x)=log_{3}(x-9)
|
f(x)=\log_{3}(x-9)
|
y=sec^2(pix)
|
y=\sec^{2}(πx)
|
y=3-x-3x^2
|
y=3-x-3x^{2}
|
f(x)=(1+x) 1/x
|
f(x)=(1+x)\frac{1}{x}
|
inverse of f(x)=(\sqrt[5]{x}+2)^7
|
inverse\:f(x)=(\sqrt[5]{x}+2)^{7}
|
f(x)=sinh(2ln(x))
|
f(x)=\sinh(2\ln(x))
|
f(t)=16^{t-0.5}
|
f(t)=16^{t-0.5}
|
f(x)=(2x^2-x-1)/x
|
f(x)=\frac{2x^{2}-x-1}{x}
|
y=-1/2 x+10
|
y=-\frac{1}{2}x+10
|
y=(-1)/(2(x-1))+3
|
y=\frac{-1}{2(x-1)}+3
|
f(x)=sqrt(x^2)-9
|
f(x)=\sqrt{x^{2}}-9
|
f(x)=(2x-1)/(x-4)
|
f(x)=\frac{2x-1}{x-4}
|
f(x)=9x-11
|
f(x)=9x-11
|
f(x)=log_{2}(x+1)-2
|
f(x)=\log_{2}(x+1)-2
|
y=-3/(x^3-11)
|
y=-\frac{3}{x^{3}-11}
|
inverse of f(x)=(x+2)^{1/5}+3
|
inverse\:f(x)=(x+2)^{\frac{1}{5}}+3
|
range of f(x)=6x^2+7x-24
|
range\:f(x)=6x^{2}+7x-24
|
extreme points of f(x)=2x-2
|
extreme\:points\:f(x)=2x-2
|
f(x)=sqrt(x^2+49)
|
f(x)=\sqrt{x^{2}+49}
|
f(x)=(3x+2)/(2x-5)
|
f(x)=\frac{3x+2}{2x-5}
|
f(x)=2^{x+1}-3.5^x
|
f(x)=2^{x+1}-3.5^{x}
|
f(x)=\sqrt[4]{x-5}
|
f(x)=\sqrt[4]{x-5}
|
f(x)= 1/(x^2+2x-35)
|
f(x)=\frac{1}{x^{2}+2x-35}
|
f(x)=(x-1)/(x+5)
|
f(x)=\frac{x-1}{x+5}
|
f(x)=sqrt(x)^2
|
f(x)=\sqrt{x}^{2}
|
y=49x^2-1
|
y=49x^{2}-1
|
f(x)=-2(x-3)^2+5
|
f(x)=-2(x-3)^{2}+5
|
domain of f(x)= 5/(x+10)
|
domain\:f(x)=\frac{5}{x+10}
|
f(x)=\sqrt[x]{3^{x+6}}-\sqrt[x-1]{3^x}
|
f(x)=\sqrt[x]{3^{x+6}}-\sqrt[x-1]{3^{x}}
|
f(x)= 2/(e^x-e^{-x)}
|
f(x)=\frac{2}{e^{x}-e^{-x}}
|
f(x)=log_{4}(64^5)
|
f(x)=\log_{4}(64^{5})
|
f(x)=2x^2+x-7
|
f(x)=2x^{2}+x-7
|
f(x)=sqrt(1-x^2)+x^2
|
f(x)=\sqrt{1-x^{2}}+x^{2}
|
r(x)=(x^3-2x^2-3x)/(x-3)
|
r(x)=\frac{x^{3}-2x^{2}-3x}{x-3}
|
y=sqrt(4+3x)
|
y=\sqrt{4+3x}
|
f(x)=(2x-7)/(6x^2-5x+1)
|
f(x)=\frac{2x-7}{6x^{2}-5x+1}
|
f(x)= x/2-sin(x)
|
f(x)=\frac{x}{2}-\sin(x)
|
f(x)=-3x^2+2x-3
|
f(x)=-3x^{2}+2x-3
|
domain of g(x)=sqrt(8x)
|
domain\:g(x)=\sqrt{8x}
|
f(x)= 1/(x+1)+1
|
f(x)=\frac{1}{x+1}+1
|
f(x)=(0.2x-9.9)ln(1.26x+2.87)
|
f(x)=(0.2x-9.9)\ln(1.26x+2.87)
|
f(x)=(x^2+2x-23)/(x-4)
|
f(x)=\frac{x^{2}+2x-23}{x-4}
|
h(x)=4^x
|
h(x)=4^{x}
|
f(x)=2x^2+7x+15
|
f(x)=2x^{2}+7x+15
|
y=x^{(-2)/5}
|
y=x^{\frac{-2}{5}}
|
g(x)=[sin(x)]^2
|
g(x)=[\sin(x)]^{2}
|
f(x)=(x^2-5x-36)/(3-2x)
|
f(x)=\frac{x^{2}-5x-36}{3-2x}
|
y=(-4x+25)/5
|
y=\frac{-4x+25}{5}
|
domain of f(x)=2x^2+24x+76
|
domain\:f(x)=2x^{2}+24x+76
|
f(x)=1-6x-x^2
|
f(x)=1-6x-x^{2}
|
f(x)=x(x^2+1)
|
f(x)=x(x^{2}+1)
|
f(x)=-5x^2-2
|
f(x)=-5x^{2}-2
|