inverse of f(x)=sqrt(5+8y)
|
inverse\:f(x)=\sqrt{5+8y}
|
inverse of f(x)=x^2-8x+10,x>= 4
|
inverse\:f(x)=x^{2}-8x+10,x\ge\:4
|
inverse of f(x)=x^2+3x-21
|
inverse\:f(x)=x^{2}+3x-21
|
inverse of 2(x-a)(x+2a)
|
inverse\:2(x-a)(x+2a)
|
inverse of f(x)= 2/(x-5)-3
|
inverse\:f(x)=\frac{2}{x-5}-3
|
inverse of f(x)=16,y= 3/8
|
inverse\:f(x)=16,y=\frac{3}{8}
|
inverse of f(x)=-x^2+11x-30
|
inverse\:f(x)=-x^{2}+11x-30
|
inverse of log_{3}(x+3)
|
inverse\:\log_{3}(x+3)
|
inverse of f(x)=(-2x-4)/(4x+2)
|
inverse\:f(x)=\frac{-2x-4}{4x+2}
|
asymptotes of arctan(e^x)
|
asymptotes\:\arctan(e^{x})
|
inverse of f(x)=log_{10}(392)
|
inverse\:f(x)=\log_{10}(392)
|
inverse of 0.5n+6.4
|
inverse\:0.5n+6.4
|
inverse of (45)/((7)^2+3(7))
|
inverse\:\frac{45}{(7)^{2}+3(7)}
|
inverse of f(x)=1+(2x-1)/(3x+2)
|
inverse\:f(x)=1+\frac{2x-1}{3x+2}
|
inverse of+7x^2+5
|
inverse\:+7x^{2}+5
|
inverse of f(x)=(3-2x)/x
|
inverse\:f(x)=\frac{3-2x}{x}
|
inverse of log_{3}(x+5)
|
inverse\:\log_{3}(x+5)
|
inverse of f(x)=5y-5
|
inverse\:f(x)=5y-5
|
inverse of f(x)=((-3x))/((4-5x))
|
inverse\:f(x)=\frac{(-3x)}{(4-5x)}
|
inverse of f(x)=5x^2+3x
|
inverse\:f(x)=5x^{2}+3x
|
parallel-3x-6y=-9
|
parallel\:-3x-6y=-9
|
inverse of cos(-0.51698)
|
inverse\:\cos(-0.51698)
|
inverse of f(x)=0.4346x+0.0238
|
inverse\:f(x)=0.4346x+0.0238
|
inverse of y=45-1.25x
|
inverse\:y=45-1.25x
|
inverse of+3cos(5x-9)
|
inverse\:+3\cos(5x-9)
|
inverse of f(x)=(6-x)/5
|
inverse\:f(x)=\frac{6-x}{5}
|
inverse of f(x)=y=25x+10x-5
|
inverse\:f(x)=y=25x+10x-5
|
inverse of ln(x)-0.01
|
inverse\:\ln(x)-0.01
|
inverse of f(x)=((x^2-1))/2
|
inverse\:f(x)=\frac{(x^{2}-1)}{2}
|
inverse of f(x)= 1/(log_{10)(x+1)}
|
inverse\:f(x)=\frac{1}{\log_{10}(x+1)}
|
midpoint (-10,1)(-2,-4)
|
midpoint\:(-10,1)(-2,-4)
|
intercepts of (1/(sin(x)))
|
intercepts\:(\frac{1}{\sin(x)})
|
inverse of (3x+1)/(-5x-2)
|
inverse\:\frac{3x+1}{-5x-2}
|
inverse of f(x)=6+sqrt(x)-8
|
inverse\:f(x)=6+\sqrt{x}-8
|
inverse of f(x)=((\sqrt[5]{x-2}))/9
|
inverse\:f(x)=\frac{(\sqrt[5]{x-2})}{9}
|
inverse of f(x)=(x+2)/(x+12)
|
inverse\:f(x)=\frac{x+2}{x+12}
|
inverse of f(x)= 4/3 pi250^3
|
inverse\:f(x)=\frac{4}{3}π250^{3}
|
inverse of f(x)=(7x-8)/3
|
inverse\:f(x)=\frac{7x-8}{3}
|
inverse of f(x)=((3x-7))/((7x+1))
|
inverse\:f(x)=\frac{(3x-7)}{(7x+1)}
|
inverse of f(x)=3(x+1)^3-1
|
inverse\:f(x)=3(x+1)^{3}-1
|
inverse of f(x)=(5x+6)/(7x+7)
|
inverse\:f(x)=\frac{5x+6}{7x+7}
|
inverse of (1-e^x)/(e^x)
|
inverse\:\frac{1-e^{x}}{e^{x}}
|
domain of f(x)=(x+1)^2-2
|
domain\:f(x)=(x+1)^{2}-2
|
inverse of f(x)=(((2x))/((x^{(2))+1)})
|
inverse\:f(x)=(\frac{(2x)}{(x^{(2)}+1)})
|
inverse of x/(x^2-x+1)
|
inverse\:\frac{x}{x^{2}-x+1}
|
inverse of f(x)= 7/(x+7)
|
inverse\:f(x)=\frac{7}{x+7}
|
inverse of f(x)=e^{(x+1)}+1
|
inverse\:f(x)=e^{(x+1)}+1
|
inverse of f(x)=7.7372-0.6974x+0.0134x^2
|
inverse\:f(x)=7.7372-0.6974x+0.0134x^{2}
|
inverse of 1-sqrt((2-2)/3)
|
inverse\:1-\sqrt{\frac{2-2}{3}}
|
inverse of-7/8 x+7
|
inverse\:-\frac{7}{8}x+7
|
inverse of f(x)=y=sec(-pi/3)
|
inverse\:f(x)=y=\sec(-\frac{π}{3})
|
inverse of 2x-3sqrt(x)
|
inverse\:2x-3\sqrt{x}
|
inverse of sin(0.75)
|
inverse\:\sin(0.75)
|
domain of f(x)= x/(x^2-169)
|
domain\:f(x)=\frac{x}{x^{2}-169}
|
inverse of-3+2sqrt(4x+6)
|
inverse\:-3+2\sqrt{4x+6}
|
inverse of f(x)=-0.5(-(x+4))-1
|
inverse\:f(x)=-0.5(-(x+4))-1
|
inverse of f(x)=\sqrt[4]{-8-8x}
|
inverse\:f(x)=\sqrt[4]{-8-8x}
|
inverse of 10ln(40t-1200)
|
inverse\:10\ln(40t-1200)
|
inverse of f(x)=15x-37
|
inverse\:f(x)=15x-37
|
inverse of 2ln(6-x)+4
|
inverse\:2\ln(6-x)+4
|
inverse of log_{4}(x+6)-5
|
inverse\:\log_{4}(x+6)-5
|
inverse of f(x)=((x-2))/((x-1))
|
inverse\:f(x)=\frac{(x-2)}{(x-1)}
|
inverse of sin(3)
|
inverse\:\sin(3)
|
inverse of (3+17x)/(8-2x)
|
inverse\:\frac{3+17x}{8-2x}
|
extreme points of f(x)=4x-x^2
|
extreme\:points\:f(x)=4x-x^{2}
|
inverse of f(x)=cos(6x)
|
inverse\:f(x)=\cos(6x)
|
inverse of 1+1/2 (z^{-1}+z)
|
inverse\:1+\frac{1}{2}(z^{-1}+z)
|
inverse of-sqrt(-(x-2)/3)+1
|
inverse\:-\sqrt{-\frac{x-2}{3}}+1
|
inverse of g(x)=(1-x)/x
|
inverse\:g(x)=\frac{1-x}{x}
|
inverse of y=(3x-1)/(-4x+1)
|
inverse\:y=\frac{3x-1}{-4x+1}
|
inverse of f(x)=1+2/(x+1)
|
inverse\:f(x)=1+\frac{2}{x+1}
|
inverse of 1+sqrt(x-1)
|
inverse\:1+\sqrt{x-1}
|
inverse of f(x)=(-14x-19)^2
|
inverse\:f(x)=(-14x-19)^{2}
|
inverse of f(x)=5x^2+3,x>= 0
|
inverse\:f(x)=5x^{2}+3,x\ge\:0
|
inverse of f(x)=be^{-2bx}
|
inverse\:f(x)=be^{-2bx}
|
symmetry x=-1/4 (y-4)^2-5
|
symmetry\:x=-\frac{1}{4}(y-4)^{2}-5
|
inverse of e^{x-1}-4
|
inverse\:e^{x-1}-4
|
inverse of (-3x+2)/(9x-8)
|
inverse\:\frac{-3x+2}{9x-8}
|
inverse of log_{10}((3b^2+21b)/(11b+77))
|
inverse\:\log_{10}(\frac{3b^{2}+21b}{11b+77})
|
inverse of (x^3)/(27)
|
inverse\:\frac{x^{3}}{27}
|
inverse of f(x)=(6x+2)/(7x+1)
|
inverse\:f(x)=\frac{6x+2}{7x+1}
|
inverse of 1/(sqrt(1+x))
|
inverse\:\frac{1}{\sqrt{1+x}}
|
inverse of f(x)=((7x-2))/(6x+5)
|
inverse\:f(x)=\frac{(7x-2)}{6x+5}
|
inverse of ((x+7))/((x-2))
|
inverse\:\frac{(x+7)}{(x-2)}
|
inverse of %
|
inverse\:\%\:
|
inverse of+(x^2-7x+10)/(x+2)
|
inverse\:+\frac{x^{2}-7x+10}{x+2}
|
critical points of f(x)=(x^2)/(x-9)
|
critical\:points\:f(x)=\frac{x^{2}}{x-9}
|
inverse of y=(3x)/(5x-9)
|
inverse\:y=\frac{3x}{5x-9}
|
inverse of s^4
|
inverse\:s^{4}
|
inverse of 2log_{5}(x^3+17)
|
inverse\:2\log_{5}(x^{3}+17)
|
inverse of f(x)=(x+1)/(-2x+1)
|
inverse\:f(x)=\frac{x+1}{-2x+1}
|
inverse of f(x)=1-\sqrt[5]{x-5}
|
inverse\:f(x)=1-\sqrt[5]{x-5}
|
inverse of (3x^2-13x+4)/(2x^2+7x-15)
|
inverse\:\frac{3x^{2}-13x+4}{2x^{2}+7x-15}
|
inverse of f(x)=9cos(2x)+7,0<= x<= pi/2
|
inverse\:f(x)=9\cos(2x)+7,0\le\:x\le\:\frac{π}{2}
|
inverse of 1/(5x+3)
|
inverse\:\frac{1}{5x+3}
|
inverse of f(x)=(x-1)/(x-1)
|
inverse\:f(x)=\frac{x-1}{x-1}
|
inverse of s^6
|
inverse\:s^{6}
|
inverse of f(x)=(36)/x
|
inverse\:f(x)=\frac{36}{x}
|
inverse of f(x)=sqrt(x^3)-2+1
|
inverse\:f(x)=\sqrt{x^{3}}-2+1
|
inverse of f(x)=(6x-5)/(x+1)
|
inverse\:f(x)=\frac{6x-5}{x+1}
|