inverse of y=(e^x)/(9+4e^x)
|
inverse\:y=\frac{e^{x}}{9+4e^{x}}
|
inverse of f(x)=2x^3-11
|
inverse\:f(x)=2x^{3}-11
|
inverse of 1/(3-x)+3
|
inverse\:\frac{1}{3-x}+3
|
inverse of f(x)=x^2-11x+24
|
inverse\:f(x)=x^{2}-11x+24
|
inverse of f(x)=300*4^t
|
inverse\:f(x)=300\cdot\:4^{t}
|
inverse of-2x^2
|
inverse\:-2x^{2}
|
inverse of ln(s-3)
|
inverse\:\ln(s-3)
|
inverse of 3x^3-9
|
inverse\:3x^{3}-9
|
inverse of f(x)=2x+5
|
inverse\:f(x)=2x+5
|
inverse of y=-1/5 (x-4)^2+2.3
|
inverse\:y=-\frac{1}{5}(x-4)^{2}+2.3
|
inverse of (9-x)^3
|
inverse\:(9-x)^{3}
|
inverse of (5t^2)/2
|
inverse\:\frac{5t^{2}}{2}
|
inverse of f(x)=((2+x))/((2-x))
|
inverse\:f(x)=\frac{(2+x)}{(2-x)}
|
inverse of f(x)=10^{(-1*((x+5))/2)}
|
inverse\:f(x)=10^{(-1\cdot\:\frac{(x+5)}{2})}
|
inverse of f(x)=sqrt(ln(x-1))
|
inverse\:f(x)=\sqrt{\ln(x-1)}
|
inverse of f(x)=(2x+8)/(x-2)
|
inverse\:f(x)=\frac{2x+8}{x-2}
|
inverse of [0-1-2]
|
inverse\:[0-1-2]
|
inverse of y= 6/x
|
inverse\:y=\frac{6}{x}
|
inverse of y=sqrt(x+7)
|
inverse\:y=\sqrt{x+7}
|
line (3,18)(15,3)
|
line\:(3,18)(15,3)
|
inverse of f(x)=(3x-5)/(x-4)
|
inverse\:f(x)=\frac{3x-5}{x-4}
|
inverse of f(x)=ln(2x-7)
|
inverse\:f(x)=\ln(2x-7)
|
inverse of f(y)=2+5(3^{0.5x-2})
|
inverse\:f(y)=2+5(3^{0.5x-2})
|
inverse of g(x)=4x+16
|
inverse\:g(x)=4x+16
|
inverse of 95393395-8
|
inverse\:95393395-8
|
inverse of y=0.0372x^2-2.5077x+27.58
|
inverse\:y=0.0372x^{2}-2.5077x+27.58
|
inverse of f(x)=5-e^{x+1}
|
inverse\:f(x)=5-e^{x+1}
|
inverse of f(x)=((5-x))/((2x-1))
|
inverse\:f(x)=\frac{(5-x)}{(2x-1)}
|
inverse of f(x)=0.4
|
inverse\:f(x)=0.4
|
inverse of x/(3x-4)
|
inverse\:\frac{x}{3x-4}
|
critical points of f(x)=2xsqrt(3x^2+1)
|
critical\:points\:f(x)=2x\sqrt{3x^{2}+1}
|
inverse of f(x)= 1/4 x+4
|
inverse\:f(x)=\frac{1}{4}x+4
|
inverse of f(x)=2sin(x)-5
|
inverse\:f(x)=2\sin(x)-5
|
inverse of f(x)=2sin(x)-3
|
inverse\:f(x)=2\sin(x)-3
|
inverse of f(x)=y=log_{2}(9x)+23
|
inverse\:f(x)=y=\log_{2}(9x)+23
|
inverse of (x+6)/(x-4)
|
inverse\:\frac{x+6}{x-4}
|
inverse of f(x)=(5x^2)/2
|
inverse\:f(x)=\frac{5x^{2}}{2}
|
inverse of f(x)=-4-2x
|
inverse\:f(x)=-4-2x
|
inverse of f(x)=35-0.7x
|
inverse\:f(x)=35-0.7x
|
inverse of f(x)= x/9+12
|
inverse\:f(x)=\frac{x}{9}+12
|
inverse of f(x)= 3/(-2x+5)
|
inverse\:f(x)=\frac{3}{-2x+5}
|
inverse of 5^x-3
|
inverse\:5^{x}-3
|
inverse of f(x)=1x
|
inverse\:f(x)=1x
|
inverse of (s+3)/(s^2-2s+10)
|
inverse\:\frac{s+3}{s^{2}-2s+10}
|
inverse of f(x)=(3-2^{arccos(x)})/5
|
inverse\:f(x)=\frac{3-2^{\arccos(x)}}{5}
|
inverse of (5s+3)/(s^2-1)
|
inverse\:\frac{5s+3}{s^{2}-1}
|
inverse of f(x)= 1/2 x-3/7
|
inverse\:f(x)=\frac{1}{2}x-\frac{3}{7}
|
inverse of 1+(4x)/(x+3)
|
inverse\:1+\frac{4x}{x+3}
|
inverse of f(x)=-3+3sqrt(2x+3)
|
inverse\:f(x)=-3+3\sqrt{2x+3}
|
inverse of f(x)=(4x)/(6x-5)
|
inverse\:f(x)=\frac{4x}{6x-5}
|
inverse of 6.75sqrt(x)+12
|
inverse\:6.75\sqrt{x}+12
|
inverse of f(x)= 3/(x^2-1)
|
inverse\:f(x)=\frac{3}{x^{2}-1}
|
inflection points of 3x^3-36x-3
|
inflection\:points\:3x^{3}-36x-3
|
inverse of f(x)=13x+3
|
inverse\:f(x)=13x+3
|
inverse of f(x)=13x+8
|
inverse\:f(x)=13x+8
|
inverse of f(x)= 1/6 x-1/3
|
inverse\:f(x)=\frac{1}{6}x-\frac{1}{3}
|
inverse of g(x)=(x+5)/(x-4)
|
inverse\:g(x)=\frac{x+5}{x-4}
|
inverse of f(x)=(7x-8)^3
|
inverse\:f(x)=(7x-8)^{3}
|
inverse of f(x)=f(x)=(x+9)/(x+1)
|
inverse\:f(x)=f(x)=\frac{x+9}{x+1}
|
inverse of f(x)=3^{(2x)}+1
|
inverse\:f(x)=3^{(2x)}+1
|
inverse of f(x)= 1/3 x^2+5
|
inverse\:f(x)=\frac{1}{3}x^{2}+5
|
inverse of f(x)=log_{2}(log_{10}(x))
|
inverse\:f(x)=\log_{2}(\log_{10}(x))
|
inverse of f(x)=(-8)/(x^2-4)
|
inverse\:f(x)=\frac{-8}{x^{2}-4}
|
shift cos(x)
|
shift\:\cos(x)
|
inverse of sqrt((2y+6)/(3y+2))
|
inverse\:\sqrt{\frac{2y+6}{3y+2}}
|
inverse of f(x)=f(x)=x^2+2
|
inverse\:f(x)=f(x)=x^{2}+2
|
inverse of f(x)=(3-4x)/(5x+1)
|
inverse\:f(x)=\frac{3-4x}{5x+1}
|
inverse of (2s-8)/(s^2-4s-4)
|
inverse\:\frac{2s-8}{s^{2}-4s-4}
|
inverse of f(x)=y=-4.9(x+3)^2+45.8
|
inverse\:f(x)=y=-4.9(x+3)^{2}+45.8
|
inverse of f(x)=(sqrt(x+6))/2
|
inverse\:f(x)=\frac{\sqrt{x+6}}{2}
|
inverse of f(x)=-((x+1))/2
|
inverse\:f(x)=-\frac{(x+1)}{2}
|
inverse of f(x)=(25)/(x^2),x>0
|
inverse\:f(x)=\frac{25}{x^{2}},x>0
|
inverse of 10cos(2/5 x)
|
inverse\:10\cos(\frac{2}{5}x)
|
domain of f(x)=(x+4)/(x^2-25)
|
domain\:f(x)=\frac{x+4}{x^{2}-25}
|
inverse of f(x)=(x-11)^2,[11,infinity ]
|
inverse\:f(x)=(x-11)^{2},[11,\infty\:]
|
inverse of-6x^3+8
|
inverse\:-6x^{3}+8
|
inverse of \sqrt[3]{x^2-5x+9}
|
inverse\:\sqrt[3]{x^{2}-5x+9}
|
inverse of f(x)=y=5x^2+10
|
inverse\:f(x)=y=5x^{2}+10
|
inverse of 8+sqrt(2x-2)
|
inverse\:8+\sqrt{2x-2}
|
inverse of ln(1-x)
|
inverse\:\ln(1-x)
|
inverse of f(x)=(x-1)^2+21
|
inverse\:f(x)=(x-1)^{2}+21
|
inverse of f(x)=(2+3ln(x))/(4-ln(x))
|
inverse\:f(x)=\frac{2+3\ln(x)}{4-\ln(x)}
|
inverse of 6/(s^2-4)
|
inverse\:\frac{6}{s^{2}-4}
|
inverse of f(x)=2pix^2+4pix
|
inverse\:f(x)=2πx^{2}+4πx
|
domain of f(x)=1+sqrt((3-x)/(5-x))
|
domain\:f(x)=1+\sqrt{\frac{3-x}{5-x}}
|
domain of f(x)=(-1)/(x^2+10x+25)
|
domain\:f(x)=\frac{-1}{x^{2}+10x+25}
|
inverse of f(x)= 1/(2x+11)
|
inverse\:f(x)=\frac{1}{2x+11}
|
inverse of (x+8)/(x-5)
|
inverse\:\frac{x+8}{x-5}
|
inverse of f(x)=sqrt(x+1)+x
|
inverse\:f(x)=\sqrt{x+1}+x
|
inverse of f(x)=sqrt(x-5)+4
|
inverse\:f(x)=\sqrt{x-5}+4
|
inverse of f(x)=4(x-3)^5+21
|
inverse\:f(x)=4(x-3)^{5}+21
|
inverse of cos(pix-2)-1
|
inverse\:\cos(πx-2)-1
|
inverse of L^{-1}((s-2)/((s+1)(s-1)))
|
inverse\:L^{-1}(\frac{s-2}{(s+1)(s-1)})
|
inverse of f(x)=log_{e}(x-2)
|
inverse\:f(x)=\log_{e}(x-2)
|
inverse of 5+2sin((x-1)/(x+1))
|
inverse\:5+2\sin(\frac{x-1}{x+1})
|
inverse of sqrt(4-e^{2x)}
|
inverse\:\sqrt{4-e^{2x}}
|
domain of f(x)=(26)/(x-7)
|
domain\:f(x)=\frac{26}{x-7}
|
inverse of f(x)=((-2x-5))/((-8x+5))
|
inverse\:f(x)=\frac{(-2x-5)}{(-8x+5)}
|
inverse of f(x)=0.99986522
|
inverse\:f(x)=0.99986522
|
inverse of f(x)=(3)-4
|
inverse\:f(x)=(3)-4
|