Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of x^3-3
derivative\:x^{3}-3
derivative of (1+cos^2(x))^5
derivative\:(1+\cos^{2}(x))^{5}
sum from n=0 to infinity of ((e^n))/5
\sum\:_{n=0}^{\infty\:}\frac{(e^{n})}{5}
derivative of-8x^3
\frac{d}{dx}(-8x^{3})
integral from 1/7 to 5 of 6xln(7x)
\int\:_{\frac{1}{7}}^{5}6x\ln(7x)dx
limit as x approaches pi/2 of x*sec(x)
\lim\:_{x\to\:\frac{π}{2}}(x\cdot\:\sec(x))
derivative of-(2x(-x^2+3)/((x^2+1)^3))
\frac{d}{dx}(-\frac{2x(-x^{2}+3)}{(x^{2}+1)^{3}})
limit as x approaches pi/2 of cot(x)
\lim\:_{x\to\:\frac{π}{2}}(\cot(x))
sum from n=5 to infinity of 1/(2^n)
\sum\:_{n=5}^{\infty\:}\frac{1}{2^{n}}
derivative of 7x^2ln(x)
\frac{d}{dx}(7x^{2}\ln(x))
f(x)=-arctan(x)
f(x)=-\arctan(x)
simplify x5^{2x}
simplify\:x5^{2x}
derivative of 1/(sqrt(1-sin^2(x)))
\frac{d}{dx}(\frac{1}{\sqrt{1-\sin^{2}(x)}})
derivative of (2t-1)(5t-5)^{-1}
derivative\:(2t-1)(5t-5)^{-1}
limit as x approaches 2 of 1/((x-2)^3)
\lim\:_{x\to\:2}(\frac{1}{(x-2)^{3}})
inverse oflaplace 4/((s-1)^3)
inverselaplace\:\frac{4}{(s-1)^{3}}
y^'=a-by^2
y^{\prime\:}=a-by^{2}
derivative of f(x)= 1/(sqrt(x+4))
derivative\:f(x)=\frac{1}{\sqrt{x+4}}
integral of (2x^2)/(1-6x^3)
\int\:\frac{2x^{2}}{1-6x^{3}}dx
(\partial)/(\partial y)(xy^3-x^2)
\frac{\partial\:}{\partial\:y}(xy^{3}-x^{2})
integral of (5x^4)/(x^5-3)
\int\:\frac{5x^{4}}{x^{5}-3}dx
area y=x^2-4,y=-2x
area\:y=x^{2}-4,y=-2x
derivative of e^{(x^3/3})
\frac{d}{dx}(e^{\frac{x^{3}}{3}})
integral of (tan^3(8/z))/(z^2)
\int\:\frac{\tan^{3}(\frac{8}{z})}{z^{2}}dz
integral of (x^2)/(x^2-4)
\int\:\frac{x^{2}}{x^{2}-4}dx
integral of 13sec^{-2}(xta)n^3x
\int\:13\sec^{-2}(xta)n^{3}xdx
derivative of ((e^x)/(ln(x)))
\frac{d}{dx}(\frac{(e^{x})}{\ln(x)})
tangent of cos(x),\at x= pi/2
tangent\:\cos(x),\at\:x=\frac{π}{2}
d/(d{r)}({r}sqrt(1-{r)^2})
\frac{d}{d{r}}({r}\sqrt{1-{r}^{2}})
integral of (y+1)/(y^2+y+1)
\int\:\frac{y+1}{y^{2}+y+1}dy
(\partial)/(\partial z)(xcos(y)sin(z))
\frac{\partial\:}{\partial\:z}(x\cos(y)\sin(z))
derivative of arcsec(5x)
derivative\:\arcsec(5x)
(\partial}{\partial L}(L^{1/4)/K ^{1/4})
\frac{\partial\:}{\partial\:L}(L^{\frac{1}{4}}{K}^{\frac{1}{4}})
area e^{(x/4)},x=4,y=1
area\:e^{(\frac{x}{4})},x=4,y=1
area x^2,-1<= x<= 2
area\:x^{2},-1\le\:x\le\:2
integral of 8t^3
\int\:8t^{3}dt
derivative of sqrt(1/x)
\frac{d}{dx}(\sqrt{\frac{1}{x}})
limit as x approaches 1+of (x^2)/(|1-x|)
\lim\:_{x\to\:1+}(\frac{x^{2}}{\left|1-x\right|})
integral from 0 to pi of cos(θ)
\int\:_{0}^{π}\cos(θ)dθ
d/(da)(a^5+a^2b^3-a^3b^2-b^5)
\frac{d}{da}(a^{5}+a^{2}b^{3}-a^{3}b^{2}-b^{5})
integral of 2/5 x^{5/2}
\int\:\frac{2}{5}x^{\frac{5}{2}}dx
(dx)/(dt)=4x-x^3
\frac{dx}{dt}=4x-x^{3}
integral from 0 to infinity of x^2e^{-2x}
\int\:_{0}^{\infty\:}x^{2}e^{-2x}dx
integral of (9x^2)/(sqrt(4x-x^2))
\int\:\frac{9x^{2}}{\sqrt{4x-x^{2}}}dx
tangent of f(x)=sqrt(3x+91),(3,10)
tangent\:f(x)=\sqrt{3x+91},(3,10)
integral of cos^5(x)sin^6(x)
\int\:\cos^{5}(x)\sin^{6}(x)dx
derivative of 2+ln(x)
\frac{d}{dx}(2+\ln(x))
derivative of ln(1+x^4)
\frac{d}{dx}(\ln(1+x^{4}))
integral from 4 to infinity of e^{-y/2}
\int\:_{4}^{\infty\:}e^{-\frac{y}{2}}dy
integral of (sin(5x)sin(x))
\int\:(\sin(5x)\sin(x))dx
integral of x/(2(x+1)sqrt(2x+1))
\int\:\frac{x}{2(x+1)\sqrt{2x+1}}dx
derivative of (x^3/3-3/(x^5)+4pi)
\frac{d}{dx}(\frac{x^{3}}{3}-\frac{3}{x^{5}}+4π)
(dy}{dx}=\frac{(4sqrt(y)log_{e}(x)))/x
\frac{dy}{dx}=\frac{(4\sqrt{y}\log_{e}(x))}{x}
tangent of-3cos(x),\at x= pi/2
tangent\:-3\cos(x),\at\:x=\frac{π}{2}
y^{''}-14y^'+49y=e^{8x}(x^2-9x-2)
y^{\prime\:\prime\:}-14y^{\prime\:}+49y=e^{8x}(x^{2}-9x-2)
y^'=1+e^{y-x+5}
y^{\prime\:}=1+e^{y-x+5}
integral of (x^2-4)^2(2x)
\int\:(x^{2}-4)^{2}(2x)dx
integral of 13sin^3(xco)s^2x
\int\:13\sin^{3}(xco)s^{2}xdx
integral of (arctan(sqrt(x)))/(sqrt(x))
\int\:\frac{\arctan(\sqrt{x})}{\sqrt{x}}dx
f(x)=tan^4(x^3)
f(x)=\tan^{4}(x^{3})
limit as x approaches 0 of 5/(x^2)
\lim\:_{x\to\:0}(\frac{5}{x^{2}})
derivative of ln(3x^3+6x^2+2x+6)
derivative\:\ln(3x^{3}+6x^{2}+2x+6)
xy^2y^'=x+9
xy^{2}y^{\prime\:}=x+9
integral of x^nsqrt(ax^{n+1)+b}
\int\:x^{n}\sqrt{ax^{n+1}+b}dx
inverse oflaplace (s^2-s+1)/((s+1)^2)
inverselaplace\:\frac{s^{2}-s+1}{(s+1)^{2}}
integral from 0 to 1 of 2pi(x+10)x^2
\int\:_{0}^{1}2π(x+10)x^{2}dx
derivative of ln|x|
derivative\:\ln\left|x\right|
(dx)/(dt)=x^2+1/36
\frac{dx}{dt}=x^{2}+\frac{1}{36}
derivative of sqrt(x)(x+1)
\frac{d}{dx}(\sqrt{x}(x+1))
derivative of ln(2xy+4)
\frac{d}{dx}(\ln(2xy+4))
integral of sec(t)(8sec(t)+7tan(t))
\int\:\sec(t)(8\sec(t)+7\tan(t))dt
derivative of (-8x-2/(9x-4))
\frac{d}{dx}(\frac{-8x-2}{9x-4})
inverse oflaplace e^{ax}
inverselaplace\:e^{ax}
f^'(x)=x-1
f^{\prime\:}(x)=x-1
y^{''}-5y^'=2t
y^{\prime\:\prime\:}-5y^{\prime\:}=2t
sum from n=4 to infinity of n!(x-4)^n
\sum\:_{n=4}^{\infty\:}n!(x-4)^{n}
t^2(dy)/(dt)+ty=3
t^{2}\frac{dy}{dt}+ty=3
d/(dt)(sqrt(5t)+(sqrt(7))/t)
\frac{d}{dt}(\sqrt{5t}+\frac{\sqrt{7}}{t})
integral of cos^3(t)-sin^2(t)cos(t)
\int\:\cos^{3}(t)-\sin^{2}(t)\cos(t)dt
derivative of y=x^2-5x-6
derivative\:y=x^{2}-5x-6
derivative of f(x)=((x+9))/(x^2-7x+1)
derivative\:f(x)=\frac{(x+9)}{x^{2}-7x+1}
derivative of g(x)= 7/(sqrt(x))
derivative\:g(x)=\frac{7}{\sqrt{x}}
integral of (4x^5)/(sqrt(1-12x^6))
\int\:\frac{4x^{5}}{\sqrt{1-12x^{6}}}dx
derivative of 12x^3-18x^2
derivative\:12x^{3}-18x^{2}
integral of 16ln(\sqrt[3]{x})
\int\:16\ln(\sqrt[3]{x})dx
(dy)/(dx)+2y=k
\frac{dy}{dx}+2y=k
tangent of f(x)=e^{x^2},\at x= 1/2
tangent\:f(x)=e^{x^{2}},\at\:x=\frac{1}{2}
integral of 1/p
\int\:\frac{1}{p}dp
integral of (4x^2-x+25)/(x^3+25x)
\int\:\frac{4x^{2}-x+25}{x^{3}+25x}dx
derivative of 1+1/x
derivative\:1+\frac{1}{x}
derivative of (2x-1/(2x+1))
\frac{d}{dx}(\frac{2x-1}{2x+1})
tangent of f(x)=9x^2+94,\at x=6
tangent\:f(x)=9x^{2}+94,\at\:x=6
(\partial)/(\partial x)(3/x-1-y)
\frac{\partial\:}{\partial\:x}(\frac{3}{x}-1-y)
area 4x+8,x^2+19x+62,[-9,-6]
area\:4x+8,x^{2}+19x+62,[-9,-6]
derivative of (8x-2x^2cos(y))
\frac{d}{dx}((8x-2x^{2})\cos(y))
derivative of y=(x^3+8)e^x
derivative\:y=(x^{3}+8)e^{x}
integral of (x^3+4)^4(3x^2)
\int\:(x^{3}+4)^{4}(3x^{2})dx
derivative of sqrt(x\sqrt{x)}
\frac{d}{dx}(\sqrt{x\sqrt{x}})
integral of 3
\int\:3dx
limit as x approaches 0-of e^{8/x}
\lim\:_{x\to\:0-}(e^{\frac{8}{x}})
1
..
196
197
198
199
200
..
1823