解
csc2(x)−3=6tan(x)
解
x=0.43008…+πn
+1
度
x=24.64185…∘+180∘n解答ステップ
csc2(x)−3=6tan(x)
両辺を2乗する(csc2(x)−3)2=(6tan(x))2
両辺から(6tan(x))2を引く(csc2(x)−3)2−36tan2(x)=0
三角関数の公式を使用して書き換える
(−3+csc2(x))2−36tan2(x)
ピタゴラスの公式を使用する: csc2(x)=1+cot2(x)=(−3+1+cot2(x))2−36tan2(x)
簡素化=(cot2(x)−2)2−36tan2(x)
(−2+cot2(x))2−36tan2(x)=0
因数 (−2+cot2(x))2−36tan2(x):(−2+cot2(x)+6tan(x))(−2+cot2(x)−6tan(x))
(−2+cot2(x))2−36tan2(x)
(−2+cot2(x))2−36tan2(x)を書き換え (−2+cot2(x))2−(6tan(x))2
(−2+cot2(x))2−36tan2(x)
36を書き換え 62=(−2+cot2(x))2−62tan2(x)
指数の規則を適用する: ambm=(ab)m62tan2(x)=(6tan(x))2=(−2+cot2(x))2−(6tan(x))2
=(−2+cot2(x))2−(6tan(x))2
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(−2+cot2(x))2−(6tan(x))2=((−2+cot2(x))+6tan(x))((−2+cot2(x))−6tan(x))=((−2+cot2(x))+6tan(x))((−2+cot2(x))−6tan(x))
改良=(cot2(x)+6tan(x)−2)(cot2(x)−6tan(x)−2)
(−2+cot2(x)+6tan(x))(−2+cot2(x)−6tan(x))=0
各部分を別個に解く−2+cot2(x)+6tan(x)=0or−2+cot2(x)−6tan(x)=0
−2+cot2(x)+6tan(x)=0:x=arccot(−2.17998…)+πn
−2+cot2(x)+6tan(x)=0
三角関数の公式を使用して書き換える
−2+cot2(x)+6tan(x)
基本的な三角関数の公式を使用する: tan(x)=cot(x)1=−2+cot2(x)+6⋅cot(x)1
6⋅cot(x)1=cot(x)6
6⋅cot(x)1
分数を乗じる: a⋅cb=ca⋅b=cot(x)1⋅6
数を乗じる:1⋅6=6=cot(x)6
=−2+cot2(x)+cot(x)6
−2+cot2(x)+cot(x)6=0
置換で解く
−2+cot2(x)+cot(x)6=0
仮定:cot(x)=u−2+u2+u6=0
−2+u2+u6=0:u≈−2.17998…
−2+u2+u6=0
以下で両辺を乗じる:u
−2+u2+u6=0
以下で両辺を乗じる:u−2u+u2u+u6u=0⋅u
簡素化
−2u+u2u+u6u=0⋅u
簡素化 u2u:u3
u2u
指数の規則を適用する: ab⋅ac=ab+cu2u=u2+1=u2+1
数を足す:2+1=3=u3
簡素化 u6u:6
u6u
分数を乗じる: a⋅cb=ca⋅b=u6u
共通因数を約分する:u=6
簡素化 0⋅u:0
0⋅u
規則を適用 0⋅a=0=0
−2u+u3+6=0
−2u+u3+6=0
−2u+u3+6=0
解く −2u+u3+6=0:u≈−2.17998…
−2u+u3+6=0
標準的な形式で書く anxn+…+a1x+a0=0u3−2u+6=0
ニュートン・ラプソン法を使用して u3−2u+6=0 の解を1つ求める:u≈−2.17998…
u3−2u+6=0
ニュートン・ラプソン概算の定義
f(u)=u3−2u+6
発見する f′(u):3u2−2
dud(u3−2u+6)
和/差の法則を適用: (f±g)′=f′±g′=dud(u3)−dud(2u)+dud(6)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud(2u)=2
dud(2u)
定数を除去: (a⋅f)′=a⋅f′=2dudu
共通の導関数を適用: dudu=1=2⋅1
簡素化=2
dud(6)=0
dud(6)
定数の導関数: dxd(a)=0=0
=3u2−2+0
簡素化=3u2−2
仮定: u0=3Δun+1<になるまで un+1を計算する 0.000001
u1=1.92:Δu1=1.08
f(u0)=33−2⋅3+6=27f′(u0)=3⋅32−2=25u1=1.92
Δu1=∣1.92−3∣=1.08Δu1=1.08
u2=0.90027…:Δu2=1.01972…
f(u1)=1.923−2⋅1.92+6=9.237888f′(u1)=3⋅1.922−2=9.0592u2=0.90027…
Δu2=∣0.90027…−1.92∣=1.01972…Δu2=1.01972…
u3=−10.52325…:Δu3=11.42353…
f(u2)=0.90027…3−2⋅0.90027…+6=4.92911…f′(u2)=3⋅0.90027…2−2=0.43148…u3=−10.52325…
Δu3=∣−10.52325…−0.90027…∣=11.42353…Δu3=11.42353…
u4=−7.07616…:Δu4=3.44709…
f(u3)=(−10.52325…)3−2(−10.52325…)+6=−1138.28856…f′(u3)=3(−10.52325…)2−2=330.21696…u4=−7.07616…
Δu4=∣−7.07616…−(−10.52325…)∣=3.44709…Δu4=3.44709…
u5=−4.82158…:Δu5=2.25458…
f(u4)=(−7.07616…)3−2(−7.07616…)+6=−334.16639…f′(u4)=3(−7.07616…)2−2=148.21639…u5=−4.82158…
Δu5=∣−4.82158…−(−7.07616…)∣=2.25458…Δu5=2.25458…
u6=−3.39785…:Δu6=1.42372…
f(u5)=(−4.82158…)3−2(−4.82158…)+6=−96.44728…f′(u5)=3(−4.82158…)2−2=67.74295…u6=−3.39785…
Δu6=∣−3.39785…−(−4.82158…)∣=1.42372…Δu6=1.42372…
u7=−2.58789…:Δu7=0.80995…
f(u6)=(−3.39785…)3−2(−3.39785…)+6=−26.43402…f′(u6)=3(−3.39785…)2−2=32.63630…u7=−2.58789…
Δu7=∣−2.58789…−(−3.39785…)∣=0.80995…Δu7=0.80995…
u8=−2.24763…:Δu8=0.34026…
f(u7)=(−2.58789…)3−2(−2.58789…)+6=−6.15594…f′(u7)=3(−2.58789…)2−2=18.09167…u8=−2.24763…
Δu8=∣−2.24763…−(−2.58789…)∣=0.34026…Δu8=0.34026…
u9=−2.18230…:Δu9=0.06533…
f(u8)=(−2.24763…)3−2(−2.24763…)+6=−0.85948…f′(u8)=3(−2.24763…)2−2=13.15559…u9=−2.18230…
Δu9=∣−2.18230…−(−2.24763…)∣=0.06533…Δu9=0.06533…
u10=−2.17998…:Δu10=0.00231…
f(u9)=(−2.18230…)3−2(−2.18230…)+6=−0.02850…f′(u9)=3(−2.18230…)2−2=12.28734…u10=−2.17998…
Δu10=∣−2.17998…−(−2.18230…)∣=0.00231…Δu10=0.00231…
u11=−2.17998…:Δu11=2.87294E−6
f(u10)=(−2.17998…)3−2(−2.17998…)+6=−0.00003…f′(u10)=3(−2.17998…)2−2=12.25699…u11=−2.17998…
Δu11=∣−2.17998…−(−2.17998…)∣=2.87294E−6Δu11=2.87294E−6
u12=−2.17998…:Δu12=4.4041E−12
f(u11)=(−2.17998…)3−2(−2.17998…)+6=−5.39808E−11f′(u11)=3(−2.17998…)2−2=12.25695…u12=−2.17998…
Δu12=∣−2.17998…−(−2.17998…)∣=4.4041E−12Δu12=4.4041E−12
u≈−2.17998…
長除法を適用する:u+2.17998…u3−2u+6=u2−2.17998…u+2.75231…
u2−2.17998…u+2.75231…≈0
ニュートン・ラプソン法を使用して u2−2.17998…u+2.75231…=0 の解を1つ求める:以下の解はない: u∈R
u2−2.17998…u+2.75231…=0
ニュートン・ラプソン概算の定義
f(u)=u2−2.17998…u+2.75231…
発見する f′(u):2u−2.17998…
dud(u2−2.17998…u+2.75231…)
和/差の法則を適用: (f±g)′=f′±g′=dud(u2)−dud(2.17998…u)+dud(2.75231…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(2.17998…u)=2.17998…
dud(2.17998…u)
定数を除去: (a⋅f)′=a⋅f′=2.17998…dudu
共通の導関数を適用: dudu=1=2.17998…⋅1
簡素化=2.17998…
dud(2.75231…)=0
dud(2.75231…)
定数の導関数: dxd(a)=0=0
=2u−2.17998…+0
簡素化=2u−2.17998…
仮定: u0=1Δun+1<になるまで un+1を計算する 0.000001
u1=9.73612…:Δu1=8.73612…
f(u0)=12−2.17998…⋅1+2.75231…=1.57233…f′(u0)=2⋅1−2.17998…=−0.17998…u1=9.73612…
Δu1=∣9.73612…−1∣=8.73612…Δu1=8.73612…
u2=5.32259…:Δu2=4.41352…
f(u1)=9.73612…2−2.17998…⋅9.73612…+2.75231…=76.31980…f′(u1)=2⋅9.73612…−2.17998…=17.29226…u2=5.32259…
Δu2=∣5.32259…−9.73612…∣=4.41352…Δu2=4.41352…
u3=3.02150…:Δu3=2.30108…
f(u2)=5.32259…2−2.17998…⋅5.32259…+2.75231…=19.47919…f′(u2)=2⋅5.32259…−2.17998…=8.46521…u3=3.02150…
Δu3=∣3.02150…−5.32259…∣=2.30108…Δu3=2.30108…
u4=1.65082…:Δu4=1.37068…
f(u3)=3.02150…2−2.17998…⋅3.02150…+2.75231…=5.29500…f′(u3)=2⋅3.02150…−2.17998…=3.86303…u4=1.65082…
Δu4=∣1.65082…−3.02150…∣=1.37068…Δu4=1.37068…
u5=−0.02415…:Δu5=1.67497…
f(u4)=1.65082…2−2.17998…⋅1.65082…+2.75231…=1.87877…f′(u4)=2⋅1.65082…−2.17998…=1.12167…u5=−0.02415…
Δu5=∣−0.02415…−1.65082…∣=1.67497…Δu5=1.67497…
u6=1.23490…:Δu6=1.25906…
f(u5)=(−0.02415…)2−2.17998…(−0.02415…)+2.75231…=2.80555…f′(u5)=2(−0.02415…)−2.17998…=−2.22828…u6=1.23490…
Δu6=∣1.23490…−(−0.02415…)∣=1.25906…Δu6=1.25906…
u7=−4.23449…:Δu7=5.46939…
f(u6)=1.23490…2−2.17998…⋅1.23490…+2.75231…=1.58523…f′(u6)=2⋅1.23490…−2.17998…=0.28983…u7=−4.23449…
Δu7=∣−4.23449…−1.23490…∣=5.46939…Δu7=5.46939…
u8=−1.42535…:Δu8=2.80913…
f(u7)=(−4.23449…)2−2.17998…(−4.23449…)+2.75231…=29.91433…f′(u7)=2(−4.23449…)−2.17998…=−10.64896…u8=−1.42535…
Δu8=∣−1.42535…−(−4.23449…)∣=2.80913…Δu8=2.80913…
u9=0.14325…:Δu9=1.56861…
f(u8)=(−1.42535…)2−2.17998…(−1.42535…)+2.75231…=7.89122…f′(u8)=2(−1.42535…)−2.17998…=−5.03069…u9=0.14325…
Δu9=∣0.14325…−(−1.42535…)∣=1.56861…Δu9=1.56861…
u10=1.44274…:Δu10=1.29948…
f(u9)=0.14325…2−2.17998…⋅0.14325…+2.75231…=2.46054…f′(u9)=2⋅0.14325…−2.17998…=−1.89347…u10=1.44274…
Δu10=∣1.44274…−0.14325…∣=1.29948…Δu10=1.29948…
u11=−0.95081…:Δu11=2.39356…
f(u10)=1.44274…2−2.17998…⋅1.44274…+2.75231…=1.68867…f′(u10)=2⋅1.44274…−2.17998…=0.70550…u11=−0.95081…
Δu11=∣−0.95081…−1.44274…∣=2.39356…Δu11=2.39356…
u12=0.45282…:Δu12=1.40364…
f(u11)=(−0.95081…)2−2.17998…(−0.95081…)+2.75231…=5.72913…f′(u11)=2(−0.95081…)−2.17998…=−4.08161…u12=0.45282…
Δu12=∣0.45282…−(−0.95081…)∣=1.40364…Δu12=1.40364…
u13=1.99891…:Δu13=1.54608…
f(u12)=0.45282…2−2.17998…⋅0.45282…+2.75231…=1.97021…f′(u12)=2⋅0.45282…−2.17998…=−1.27432…u13=1.99891…
Δu13=∣1.99891…−0.45282…∣=1.54608…Δu13=1.54608…
解を見つけられない
解はu≈−2.17998…
u≈−2.17998…
解を検算する
未定義の (特異) 点を求める:u=0
−2+u2+u6 の分母をゼロに比較する
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u≈−2.17998…
代用を戻す u=cot(x)cot(x)≈−2.17998…
cot(x)≈−2.17998…
cot(x)=−2.17998…:x=arccot(−2.17998…)+πn
cot(x)=−2.17998…
三角関数の逆数プロパティを適用する
cot(x)=−2.17998…
以下の一般解 cot(x)=−2.17998…cot(x)=−a⇒x=arccot(−a)+πnx=arccot(−2.17998…)+πn
x=arccot(−2.17998…)+πn
すべての解を組み合わせるx=arccot(−2.17998…)+πn
−2+cot2(x)−6tan(x)=0:x=arccot(2.17998…)+πn
−2+cot2(x)−6tan(x)=0
三角関数の公式を使用して書き換える
−2+cot2(x)−6tan(x)
基本的な三角関数の公式を使用する: tan(x)=cot(x)1=−2+cot2(x)−6⋅cot(x)1
6⋅cot(x)1=cot(x)6
6⋅cot(x)1
分数を乗じる: a⋅cb=ca⋅b=cot(x)1⋅6
数を乗じる:1⋅6=6=cot(x)6
=−2+cot2(x)−cot(x)6
−2+cot2(x)−cot(x)6=0
置換で解く
−2+cot2(x)−cot(x)6=0
仮定:cot(x)=u−2+u2−u6=0
−2+u2−u6=0:u≈2.17998…
−2+u2−u6=0
以下で両辺を乗じる:u
−2+u2−u6=0
以下で両辺を乗じる:u−2u+u2u−u6u=0⋅u
簡素化
−2u+u2u−u6u=0⋅u
簡素化 u2u:u3
u2u
指数の規則を適用する: ab⋅ac=ab+cu2u=u2+1=u2+1
数を足す:2+1=3=u3
簡素化 −u6u:−6
−u6u
分数を乗じる: a⋅cb=ca⋅b=−u6u
共通因数を約分する:u=−6
簡素化 0⋅u:0
0⋅u
規則を適用 0⋅a=0=0
−2u+u3−6=0
−2u+u3−6=0
−2u+u3−6=0
解く −2u+u3−6=0:u≈2.17998…
−2u+u3−6=0
標準的な形式で書く anxn+…+a1x+a0=0u3−2u−6=0
ニュートン・ラプソン法を使用して u3−2u−6=0 の解を1つ求める:u≈2.17998…
u3−2u−6=0
ニュートン・ラプソン概算の定義
f(u)=u3−2u−6
発見する f′(u):3u2−2
dud(u3−2u−6)
和/差の法則を適用: (f±g)′=f′±g′=dud(u3)−dud(2u)−dud(6)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud(2u)=2
dud(2u)
定数を除去: (a⋅f)′=a⋅f′=2dudu
共通の導関数を適用: dudu=1=2⋅1
簡素化=2
dud(6)=0
dud(6)
定数の導関数: dxd(a)=0=0
=3u2−2−0
簡素化=3u2−2
仮定: u0=−3Δun+1<になるまで un+1を計算する 0.000001
u1=−1.92:Δu1=1.08
f(u0)=(−3)3−2(−3)−6=−27f′(u0)=3(−3)2−2=25u1=−1.92
Δu1=∣−1.92−(−3)∣=1.08Δu1=1.08
u2=−0.90027…:Δu2=1.01972…
f(u1)=(−1.92)3−2(−1.92)−6=−9.237888f′(u1)=3(−1.92)2−2=9.0592u2=−0.90027…
Δu2=∣−0.90027…−(−1.92)∣=1.01972…Δu2=1.01972…
u3=10.52325…:Δu3=11.42353…
f(u2)=(−0.90027…)3−2(−0.90027…)−6=−4.92911…f′(u2)=3(−0.90027…)2−2=0.43148…u3=10.52325…
Δu3=∣10.52325…−(−0.90027…)∣=11.42353…Δu3=11.42353…
u4=7.07616…:Δu4=3.44709…
f(u3)=10.52325…3−2⋅10.52325…−6=1138.28856…f′(u3)=3⋅10.52325…2−2=330.21696…u4=7.07616…
Δu4=∣7.07616…−10.52325…∣=3.44709…Δu4=3.44709…
u5=4.82158…:Δu5=2.25458…
f(u4)=7.07616…3−2⋅7.07616…−6=334.16639…f′(u4)=3⋅7.07616…2−2=148.21639…u5=4.82158…
Δu5=∣4.82158…−7.07616…∣=2.25458…Δu5=2.25458…
u6=3.39785…:Δu6=1.42372…
f(u5)=4.82158…3−2⋅4.82158…−6=96.44728…f′(u5)=3⋅4.82158…2−2=67.74295…u6=3.39785…
Δu6=∣3.39785…−4.82158…∣=1.42372…Δu6=1.42372…
u7=2.58789…:Δu7=0.80995…
f(u6)=3.39785…3−2⋅3.39785…−6=26.43402…f′(u6)=3⋅3.39785…2−2=32.63630…u7=2.58789…
Δu7=∣2.58789…−3.39785…∣=0.80995…Δu7=0.80995…
u8=2.24763…:Δu8=0.34026…
f(u7)=2.58789…3−2⋅2.58789…−6=6.15594…f′(u7)=3⋅2.58789…2−2=18.09167…u8=2.24763…
Δu8=∣2.24763…−2.58789…∣=0.34026…Δu8=0.34026…
u9=2.18230…:Δu9=0.06533…
f(u8)=2.24763…3−2⋅2.24763…−6=0.85948…f′(u8)=3⋅2.24763…2−2=13.15559…u9=2.18230…
Δu9=∣2.18230…−2.24763…∣=0.06533…Δu9=0.06533…
u10=2.17998…:Δu10=0.00231…
f(u9)=2.18230…3−2⋅2.18230…−6=0.02850…f′(u9)=3⋅2.18230…2−2=12.28734…u10=2.17998…
Δu10=∣2.17998…−2.18230…∣=0.00231…Δu10=0.00231…
u11=2.17998…:Δu11=2.87294E−6
f(u10)=2.17998…3−2⋅2.17998…−6=0.00003…f′(u10)=3⋅2.17998…2−2=12.25699…u11=2.17998…
Δu11=∣2.17998…−2.17998…∣=2.87294E−6Δu11=2.87294E−6
u12=2.17998…:Δu12=4.4041E−12
f(u11)=2.17998…3−2⋅2.17998…−6=5.39808E−11f′(u11)=3⋅2.17998…2−2=12.25695…u12=2.17998…
Δu12=∣2.17998…−2.17998…∣=4.4041E−12Δu12=4.4041E−12
u≈2.17998…
長除法を適用する:u−2.17998…u3−2u−6=u2+2.17998…u+2.75231…
u2+2.17998…u+2.75231…≈0
ニュートン・ラプソン法を使用して u2+2.17998…u+2.75231…=0 の解を1つ求める:以下の解はない: u∈R
u2+2.17998…u+2.75231…=0
ニュートン・ラプソン概算の定義
f(u)=u2+2.17998…u+2.75231…
発見する f′(u):2u+2.17998…
dud(u2+2.17998…u+2.75231…)
和/差の法則を適用: (f±g)′=f′±g′=dud(u2)+dud(2.17998…u)+dud(2.75231…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(2.17998…u)=2.17998…
dud(2.17998…u)
定数を除去: (a⋅f)′=a⋅f′=2.17998…dudu
共通の導関数を適用: dudu=1=2.17998…⋅1
簡素化=2.17998…
dud(2.75231…)=0
dud(2.75231…)
定数の導関数: dxd(a)=0=0
=2u+2.17998…+0
簡素化=2u+2.17998…
仮定: u0=−1Δun+1<になるまで un+1を計算する 0.000001
u1=−9.73612…:Δu1=8.73612…
f(u0)=(−1)2+2.17998…(−1)+2.75231…=1.57233…f′(u0)=2(−1)+2.17998…=0.17998…u1=−9.73612…
Δu1=∣−9.73612…−(−1)∣=8.73612…Δu1=8.73612…
u2=−5.32259…:Δu2=4.41352…
f(u1)=(−9.73612…)2+2.17998…(−9.73612…)+2.75231…=76.31980…f′(u1)=2(−9.73612…)+2.17998…=−17.29226…u2=−5.32259…
Δu2=∣−5.32259…−(−9.73612…)∣=4.41352…Δu2=4.41352…
u3=−3.02150…:Δu3=2.30108…
f(u2)=(−5.32259…)2+2.17998…(−5.32259…)+2.75231…=19.47919…f′(u2)=2(−5.32259…)+2.17998…=−8.46521…u3=−3.02150…
Δu3=∣−3.02150…−(−5.32259…)∣=2.30108…Δu3=2.30108…
u4=−1.65082…:Δu4=1.37068…
f(u3)=(−3.02150…)2+2.17998…(−3.02150…)+2.75231…=5.29500…f′(u3)=2(−3.02150…)+2.17998…=−3.86303…u4=−1.65082…
Δu4=∣−1.65082…−(−3.02150…)∣=1.37068…Δu4=1.37068…
u5=0.02415…:Δu5=1.67497…
f(u4)=(−1.65082…)2+2.17998…(−1.65082…)+2.75231…=1.87877…f′(u4)=2(−1.65082…)+2.17998…=−1.12167…u5=0.02415…
Δu5=∣0.02415…−(−1.65082…)∣=1.67497…Δu5=1.67497…
u6=−1.23490…:Δu6=1.25906…
f(u5)=0.02415…2+2.17998…⋅0.02415…+2.75231…=2.80555…f′(u5)=2⋅0.02415…+2.17998…=2.22828…u6=−1.23490…
Δu6=∣−1.23490…−0.02415…∣=1.25906…Δu6=1.25906…
u7=4.23449…:Δu7=5.46939…
f(u6)=(−1.23490…)2+2.17998…(−1.23490…)+2.75231…=1.58523…f′(u6)=2(−1.23490…)+2.17998…=−0.28983…u7=4.23449…
Δu7=∣4.23449…−(−1.23490…)∣=5.46939…Δu7=5.46939…
u8=1.42535…:Δu8=2.80913…
f(u7)=4.23449…2+2.17998…⋅4.23449…+2.75231…=29.91433…f′(u7)=2⋅4.23449…+2.17998…=10.64896…u8=1.42535…
Δu8=∣1.42535…−4.23449…∣=2.80913…Δu8=2.80913…
u9=−0.14325…:Δu9=1.56861…
f(u8)=1.42535…2+2.17998…⋅1.42535…+2.75231…=7.89122…f′(u8)=2⋅1.42535…+2.17998…=5.03069…u9=−0.14325…
Δu9=∣−0.14325…−1.42535…∣=1.56861…Δu9=1.56861…
u10=−1.44274…:Δu10=1.29948…
f(u9)=(−0.14325…)2+2.17998…(−0.14325…)+2.75231…=2.46054…f′(u9)=2(−0.14325…)+2.17998…=1.89347…u10=−1.44274…
Δu10=∣−1.44274…−(−0.14325…)∣=1.29948…Δu10=1.29948…
u11=0.95081…:Δu11=2.39356…
f(u10)=(−1.44274…)2+2.17998…(−1.44274…)+2.75231…=1.68867…f′(u10)=2(−1.44274…)+2.17998…=−0.70550…u11=0.95081…
Δu11=∣0.95081…−(−1.44274…)∣=2.39356…Δu11=2.39356…
u12=−0.45282…:Δu12=1.40364…
f(u11)=0.95081…2+2.17998…⋅0.95081…+2.75231…=5.72913…f′(u11)=2⋅0.95081…+2.17998…=4.08161…u12=−0.45282…
Δu12=∣−0.45282…−0.95081…∣=1.40364…Δu12=1.40364…
u13=−1.99891…:Δu13=1.54608…
f(u12)=(−0.45282…)2+2.17998…(−0.45282…)+2.75231…=1.97021…f′(u12)=2(−0.45282…)+2.17998…=1.27432…u13=−1.99891…
Δu13=∣−1.99891…−(−0.45282…)∣=1.54608…Δu13=1.54608…
解を見つけられない
解はu≈2.17998…
u≈2.17998…
解を検算する
未定義の (特異) 点を求める:u=0
−2+u2−u6 の分母をゼロに比較する
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u≈2.17998…
代用を戻す u=cot(x)cot(x)≈2.17998…
cot(x)≈2.17998…
cot(x)=2.17998…:x=arccot(2.17998…)+πn
cot(x)=2.17998…
三角関数の逆数プロパティを適用する
cot(x)=2.17998…
以下の一般解 cot(x)=2.17998…cot(x)=a⇒x=arccot(a)+πnx=arccot(2.17998…)+πn
x=arccot(2.17998…)+πn
すべての解を組み合わせるx=arccot(2.17998…)+πn
すべての解を組み合わせるx=arccot(−2.17998…)+πn,x=arccot(2.17998…)+πn
元のequationに当てはめて解を検算する
csc2(x)−3=6tan(x) に当てはめて解を確認する
equationに一致しないものを削除する。
解答を確認する arccot(−2.17998…)+πn:偽
arccot(−2.17998…)+πn
挿入 n=1arccot(−2.17998…)+π1
csc2(x)−3=6tan(x)の挿入向けx=arccot(−2.17998…)+π1csc2(arccot(−2.17998…)+π1)−3=6tan(arccot(−2.17998…)+π1)
改良2.75231…=−2.75231…
⇒偽
解答を確認する arccot(2.17998…)+πn:真
arccot(2.17998…)+πn
挿入 n=1arccot(2.17998…)+π1
csc2(x)−3=6tan(x)の挿入向けx=arccot(2.17998…)+π1csc2(arccot(2.17998…)+π1)−3=6tan(arccot(2.17998…)+π1)
改良2.75231…=2.75231…
⇒真
x=arccot(2.17998…)+πn
10進法形式で解を証明するx=0.43008…+πn