解答
49.55cos(θ)−30sin(θ)=1.225
解答
θ=π+1.04752…+2πn,θ=1.00522…+2πn
+1
度数
θ=240.01903…∘+360∘n,θ=57.59542…∘+360∘n求解步骤
49.55cos(θ)−30sin(θ)=1.225
两边加上 30sin(θ)49.55cos(θ)=1.225+30sin(θ)
两边进行平方(49.55cos(θ))2=(1.225+30sin(θ))2
两边减去 (1.225+30sin(θ))22455.2025cos2(θ)−1.500625−73.5sin(θ)−900sin2(θ)=0
使用三角恒等式改写
−1.500625+2455.2025cos2(θ)−73.5sin(θ)−900sin2(θ)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1.500625+2455.2025(1−sin2(θ))−73.5sin(θ)−900sin2(θ)
化简 −1.500625+2455.2025(1−sin2(θ))−73.5sin(θ)−900sin2(θ):−3355.2025sin2(θ)−73.5sin(θ)+2453.701875
−1.500625+2455.2025(1−sin2(θ))−73.5sin(θ)−900sin2(θ)
乘开 2455.2025(1−sin2(θ)):2455.2025−2455.2025sin2(θ)
2455.2025(1−sin2(θ))
使用分配律: a(b−c)=ab−aca=2455.2025,b=1,c=sin2(θ)=2455.2025⋅1−2455.2025sin2(θ)
=1⋅2455.2025−2455.2025sin2(θ)
数字相乘:1⋅2455.2025=2455.2025=2455.2025−2455.2025sin2(θ)
=−1.500625+2455.2025−2455.2025sin2(θ)−73.5sin(θ)−900sin2(θ)
化简 −1.500625+2455.2025−2455.2025sin2(θ)−73.5sin(θ)−900sin2(θ):−3355.2025sin2(θ)−73.5sin(θ)+2453.701875
−1.500625+2455.2025−2455.2025sin2(θ)−73.5sin(θ)−900sin2(θ)
对同类项分组=−2455.2025sin2(θ)−73.5sin(θ)−900sin2(θ)−1.500625+2455.2025
同类项相加:−2455.2025sin2(θ)−900sin2(θ)=−3355.2025sin2(θ)=−3355.2025sin2(θ)−73.5sin(θ)−1.500625+2455.2025
数字相加/相减:−1.500625+2455.2025=2453.701875=−3355.2025sin2(θ)−73.5sin(θ)+2453.701875
=−3355.2025sin2(θ)−73.5sin(θ)+2453.701875
=−3355.2025sin2(θ)−73.5sin(θ)+2453.701875
2453.701875−3355.2025sin2(θ)−73.5sin(θ)=0
用替代法求解
2453.701875−3355.2025sin2(θ)−73.5sin(θ)=0
令:sin(θ)=u2453.701875−3355.2025u2−73.5u=0
2453.701875−3355.2025u2−73.5u=0:u=−6710.40573.5+32936068.91101…,u=6710.40532936068.91101…−73.5
2453.701875−3355.2025u2−73.5u=0
改写成标准形式 ax2+bx+c=0−3355.2025u2−73.5u+2453.701875=0
使用求根公式求解
−3355.2025u2−73.5u+2453.701875=0
二次方程求根公式:
若 a=−3355.2025,b=−73.5,c=2453.701875u1,2=2(−3355.2025)−(−73.5)±(−73.5)2−4(−3355.2025)⋅2453.701875
u1,2=2(−3355.2025)−(−73.5)±(−73.5)2−4(−3355.2025)⋅2453.701875
(−73.5)2−4(−3355.2025)⋅2453.701875=32936068.91101…
(−73.5)2−4(−3355.2025)⋅2453.701875
使用法则 −(−a)=a=(−73.5)2+4⋅3355.2025⋅2453.701875
使用指数法则: (−a)n=an,若 n 是偶数(−73.5)2=73.52=73.52+4⋅2453.701875⋅3355.2025
数字相乘:4⋅3355.2025⋅2453.701875=32930666.66101…=73.52+32930666.66101…
73.52=5402.25=5402.25+32930666.66101…
数字相加:5402.25+32930666.66101…=32936068.91101…=32936068.91101…
u1,2=2(−3355.2025)−(−73.5)±32936068.91101…
将解分隔开u1=2(−3355.2025)−(−73.5)+32936068.91101…,u2=2(−3355.2025)−(−73.5)−32936068.91101…
u=2(−3355.2025)−(−73.5)+32936068.91101…:−6710.40573.5+32936068.91101…
2(−3355.2025)−(−73.5)+32936068.91101…
去除括号: (−a)=−a,−(−a)=a=−2⋅3355.202573.5+32936068.91101…
数字相乘:2⋅3355.2025=6710.405=−6710.40573.5+32936068.91101…
使用分式法则: −ba=−ba=−6710.40573.5+32936068.91101…
u=2(−3355.2025)−(−73.5)−32936068.91101…:6710.40532936068.91101…−73.5
2(−3355.2025)−(−73.5)−32936068.91101…
去除括号: (−a)=−a,−(−a)=a=−2⋅3355.202573.5−32936068.91101…
数字相乘:2⋅3355.2025=6710.405=−6710.40573.5−32936068.91101…
使用分式法则: −b−a=ba73.5−32936068.91101…=−(32936068.91101…−73.5)=6710.40532936068.91101…−73.5
二次方程组的解是:u=−6710.40573.5+32936068.91101…,u=6710.40532936068.91101…−73.5
u=sin(θ)代回sin(θ)=−6710.40573.5+32936068.91101…,sin(θ)=6710.40532936068.91101…−73.5
sin(θ)=−6710.40573.5+32936068.91101…,sin(θ)=6710.40532936068.91101…−73.5
sin(θ)=−6710.40573.5+32936068.91101…:θ=arcsin(−6710.40573.5+32936068.91101…)+2πn,θ=π+arcsin(6710.40573.5+32936068.91101…)+2πn
sin(θ)=−6710.40573.5+32936068.91101…
使用反三角函数性质
sin(θ)=−6710.40573.5+32936068.91101…
sin(θ)=−6710.40573.5+32936068.91101…的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(−6710.40573.5+32936068.91101…)+2πn,θ=π+arcsin(6710.40573.5+32936068.91101…)+2πn
θ=arcsin(−6710.40573.5+32936068.91101…)+2πn,θ=π+arcsin(6710.40573.5+32936068.91101…)+2πn
sin(θ)=6710.40532936068.91101…−73.5:θ=arcsin(6710.40532936068.91101…−73.5)+2πn,θ=π−arcsin(6710.40532936068.91101…−73.5)+2πn
sin(θ)=6710.40532936068.91101…−73.5
使用反三角函数性质
sin(θ)=6710.40532936068.91101…−73.5
sin(θ)=6710.40532936068.91101…−73.5的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(6710.40532936068.91101…−73.5)+2πn,θ=π−arcsin(6710.40532936068.91101…−73.5)+2πn
θ=arcsin(6710.40532936068.91101…−73.5)+2πn,θ=π−arcsin(6710.40532936068.91101…−73.5)+2πn
合并所有解θ=arcsin(−6710.40573.5+32936068.91101…)+2πn,θ=π+arcsin(6710.40573.5+32936068.91101…)+2πn,θ=arcsin(6710.40532936068.91101…−73.5)+2πn,θ=π−arcsin(6710.40532936068.91101…−73.5)+2πn
将解代入原方程进行验证
将它们代入 49.55cos(θ)−30sin(θ)=1.225检验解是否符合
去除与方程不符的解。
检验 arcsin(−6710.40573.5+32936068.91101…)+2πn的解:假
arcsin(−6710.40573.5+32936068.91101…)+2πn
代入 n=1arcsin(−6710.40573.5+32936068.91101…)+2π1
对于 49.55cos(θ)−30sin(θ)=1.225代入θ=arcsin(−6710.40573.5+32936068.91101…)+2π149.55cos(arcsin(−6710.40573.5+32936068.91101…)+2π1)−30sin(arcsin(−6710.40573.5+32936068.91101…)+2π1)=1.225
整理后得50.74648…=1.225
⇒假
检验 π+arcsin(6710.40573.5+32936068.91101…)+2πn的解:真
π+arcsin(6710.40573.5+32936068.91101…)+2πn
代入 n=1π+arcsin(6710.40573.5+32936068.91101…)+2π1
对于 49.55cos(θ)−30sin(θ)=1.225代入θ=π+arcsin(6710.40573.5+32936068.91101…)+2π149.55cos(π+arcsin(6710.40573.5+32936068.91101…)+2π1)−30sin(π+arcsin(6710.40573.5+32936068.91101…)+2π1)=1.225
整理后得1.22499…=1.225
⇒真
检验 arcsin(6710.40532936068.91101…−73.5)+2πn的解:真
arcsin(6710.40532936068.91101…−73.5)+2πn
代入 n=1arcsin(6710.40532936068.91101…−73.5)+2π1
对于 49.55cos(θ)−30sin(θ)=1.225代入θ=arcsin(6710.40532936068.91101…−73.5)+2π149.55cos(arcsin(6710.40532936068.91101…−73.5)+2π1)−30sin(arcsin(6710.40532936068.91101…−73.5)+2π1)=1.225
整理后得1.225=1.225
⇒真
检验 π−arcsin(6710.40532936068.91101…−73.5)+2πn的解:假
π−arcsin(6710.40532936068.91101…−73.5)+2πn
代入 n=1π−arcsin(6710.40532936068.91101…−73.5)+2π1
对于 49.55cos(θ)−30sin(θ)=1.225代入θ=π−arcsin(6710.40532936068.91101…−73.5)+2π149.55cos(π−arcsin(6710.40532936068.91101…−73.5)+2π1)−30sin(π−arcsin(6710.40532936068.91101…−73.5)+2π1)=1.225
整理后得−51.88211…=1.225
⇒假
θ=π+arcsin(6710.40573.5+32936068.91101…)+2πn,θ=arcsin(6710.40532936068.91101…−73.5)+2πn
以小数形式表示解θ=π+1.04752…+2πn,θ=1.00522…+2πn