Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(θ)>0,tan(θ)<0

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(θ)>0,tan(θ)<0

Lösung

2πn<θ<π+2πn
+2
Intervall-Notation
(2πn,π+2πn)
Dezimale
2πn<θ<3.14159…+2πn
Schritte zur Lösung
sin(θ)>0
Für sin(x)>a, wenn −1≤a<1 dann arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<θ<π−arcsin(0)+2πn
Vereinfache arcsin(0):0
arcsin(0)
Verwende die folgende triviale Identität:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Vereinfache π−arcsin(0):π
π−arcsin(0)
Verwende die folgende triviale Identität:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<θ<π+2πn
Vereinfache2πn<θ<π+2πn

Beliebte Beispiele

sin(2x)>(sqrt(2))/2sin(2x)>22​​2sin(x)>12sin(x)>1((2cos(x)+1))/(2sin(x)-sqrt(3))>0[0.2pi]2sin(x)−3​(2cos(x)+1)​>0[0.2π]0.5sin(2t)+1.2>1.450.5sin(2t)+1.2>1.45tan^2(x)+2tan(x)>3tan2(x)+2tan(x)>3
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024