Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
AI Chat
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

prouver tan(pi/2-x)cot(x)=csc^2(x)-1

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

prouver tan(2π​−x)cot(x)=csc2(x)−1

Solution

vrai
étapes des solutions
tan(2π​−x)cot(x)=csc2(x)−1
En manipulant le côté gauchetan(2π​−x)cot(x)
Récrire en utilisant des identités trigonométriques
tan(2π​−x)
Utiliser l'identité trigonométrique de base: tan(x)=cos(x)sin(x)​=cos(2π​−x)sin(2π​−x)​
Utiliser l'identité de la différence de l'angle : sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(2π​−x)sin(2π​)cos(x)−cos(2π​)sin(x)​
Utiliser l'identité de la différence de l'angle : cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(2π​)cos(x)+sin(2π​)sin(x)sin(2π​)cos(x)−cos(2π​)sin(x)​
Simplifier cos(2π​)cos(x)+sin(2π​)sin(x)sin(2π​)cos(x)−cos(2π​)sin(x)​:sin(x)cos(x)​
cos(2π​)cos(x)+sin(2π​)sin(x)sin(2π​)cos(x)−cos(2π​)sin(x)​
sin(2π​)cos(x)−cos(2π​)sin(x)=cos(x)
sin(2π​)cos(x)−cos(2π​)sin(x)
sin(2π​)cos(x)=cos(x)
sin(2π​)cos(x)
Simplifier sin(2π​):1
sin(2π​)
Utiliser l'identité triviale suivante:sin(2π​)=1
Tableau de périodicité sin(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅cos(x)
Multiplier: 1⋅cos(x)=cos(x)=cos(x)
cos(2π​)sin(x)=0
cos(2π​)sin(x)
Simplifier cos(2π​):0
cos(2π​)
Utiliser l'identité triviale suivante:cos(2π​)=0
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(x)
Appliquer la règle 0⋅a=0=0
=cos(x)−0
cos(x)−0=cos(x)=cos(x)
=cos(2π​)cos(x)+sin(2π​)sin(x)cos(x)​
cos(2π​)cos(x)+sin(2π​)sin(x)=sin(x)
cos(2π​)cos(x)+sin(2π​)sin(x)
cos(2π​)cos(x)=0
cos(2π​)cos(x)
Simplifier cos(2π​):0
cos(2π​)
Utiliser l'identité triviale suivante:cos(2π​)=0
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅cos(x)
Appliquer la règle 0⋅a=0=0
sin(2π​)sin(x)=sin(x)
sin(2π​)sin(x)
Simplifier sin(2π​):1
sin(2π​)
Utiliser l'identité triviale suivante:sin(2π​)=1
Tableau de périodicité sin(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅sin(x)
Multiplier: 1⋅sin(x)=sin(x)=sin(x)
=0+sin(x)
0+sin(x)=sin(x)=sin(x)
=sin(x)cos(x)​
=sin(x)cos(x)​
=sin(x)cos(x)​cot(x)
Multiplier des fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cot(x)​
Exprimer avec sinus, cosinus
sin(x)cos(x)cot(x)​
Utiliser l'identité trigonométrique de base: cot(x)=sin(x)cos(x)​=sin(x)cos(x)sin(x)cos(x)​​
Simplifier sin(x)cos(x)sin(x)cos(x)​​:sin2(x)cos2(x)​
sin(x)cos(x)sin(x)cos(x)​​
Multiplier cos(x)sin(x)cos(x)​:sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multiplier des fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Appliquer la règle de l'exposant: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Additionner les nombres : 1+1=2=cos2(x)
=sin(x)cos2(x)​
=sin(x)sin(x)cos2(x)​​
Appliquer la règle des fractions: acb​​=c⋅ab​=sin(x)sin(x)cos2(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Appliquer la règle de l'exposant: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Additionner les nombres : 1+1=2=sin2(x)
=sin2(x)cos2(x)​
=sin2(x)cos2(x)​
=sin2(x)cos2(x)​
Récrire en utilisant des identités trigonométriques
sin2(x)cos2(x)​
Utiliser l'identité hyperbolique: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin2(x)1−sin2(x)​
=sin2(x)1−sin2(x)​
Récrire en utilisant des identités trigonométriques
Utiliser l'identité trigonométrique de base: sin(x)=csc(x)1​(csc(x)1​)21−(csc(x)1​)2​
Simplifier
(csc(x)1​)21−(csc(x)1​)2​
(csc(x)1​)2=csc2(x)1​
(csc(x)1​)2
Appliquer la règle de l'exposant: (ba​)c=bcac​=csc2(x)12​
Appliquer la règle 1a=112=1=csc2(x)1​
=csc2(x)1​1−(csc(x)1​)2​
(csc(x)1​)2=csc2(x)1​
(csc(x)1​)2
Appliquer la règle de l'exposant: (ba​)c=bcac​=csc2(x)12​
Appliquer la règle 1a=112=1=csc2(x)1​
=csc2(x)1​1−csc2(x)1​​
Appliquer la règle des fractions: cb​a​=ba⋅c​=1(1−csc2(x)1​)csc2(x)​
Relier 1−csc2(x)1​:csc2(x)csc2(x)−1​
1−csc2(x)1​
Convertir un élément en fraction: 1=csc2(x)1csc2(x)​=csc2(x)1⋅csc2(x)​−csc2(x)1​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=csc2(x)1⋅csc2(x)−1​
Multiplier: 1⋅csc2(x)=csc2(x)=csc2(x)csc2(x)−1​
=1csc2(x)csc2(x)−1​csc2(x)​
Appliquer la règle des fractions: 1a​=a=csc2(x)csc2(x)−1​csc2(x)
Multiplier des fractions: a⋅cb​=ca⋅b​=csc2(x)(csc2(x)−1)csc2(x)​
Annuler le facteur commun : csc2(x)=csc2(x)−1
csc2(x)−1
csc2(x)−1
Nous avons démontré que les deux côtés pourraient avoir la même forme⇒vrai

Exemples populaires

prouver cot^2(α)=cos^2(α)+(cot(α)*cos(α))^2provecot2(α)=cos2(α)+(cot(α)⋅cos(α))2prouver 1/(tan(α))*1/(cos(α))= 1/(sin(α))provetan(α)1​⋅cos(α)1​=sin(α)1​prouver sec(x)=arccos(x)provesec(x)=arccos(x)prouver tan(θ)+sin(θ)=4(1+cos(θ))provetan(θ)+sin(θ)=4(1+cos(θ))prouver 2/(cot(x)tan(x))=sin(2x)provecot(x)tan(x)2​=sin(2x)
Outils d'étudeSolveur mathématique IAAI ChatDes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension Chrome
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeService TermsPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024