y=-log_{4}(-x)
|
y=-\log_{4}(-x)
|
y=-x^2+x-6
|
y=-x^{2}+x-6
|
parallel 2x+y=3,\at (4,1)
|
parallel\:2x+y=3,\at\:(4,1)
|
f(t)=1-t/pi
|
f(t)=1-\frac{t}{π}
|
f(x)=sin^4(x)cos(x)
|
f(x)=\sin^{4}(x)\cos(x)
|
y=-2*sin(4x)+3
|
y=-2\cdot\:\sin(4x)+3
|
f(x)= 1/(2-x^2)
|
f(x)=\frac{1}{2-x^{2}}
|
f(x)= 3/(x^2)+5/(x^4)
|
f(x)=\frac{3}{x^{2}}+\frac{5}{x^{4}}
|
f(m)=m^{2/3}+4m^{1/3}+4
|
f(m)=m^{\frac{2}{3}}+4m^{\frac{1}{3}}+4
|
y=(x^2+1)3
|
y=(x^{2}+1)3
|
f(x)=x^4-7x^3-2x^2+5x+8
|
f(x)=x^{4}-7x^{3}-2x^{2}+5x+8
|
f(x)=log_{10}(13-x)
|
f(x)=\log_{10}(13-x)
|
f(x)=(-9)/(x^2)
|
f(x)=\frac{-9}{x^{2}}
|
domain of f(x)=5-x^2
|
domain\:f(x)=5-x^{2}
|
y=sqrt(2x)+1/(sqrt(2x))
|
y=\sqrt{2x}+\frac{1}{\sqrt{2x}}
|
f(x)=2^{1-x}+3
|
f(x)=2^{1-x}+3
|
y=30.267-0.149x
|
y=30.267-0.149x
|
y=sqrt(3-x)+arctan(1/x)
|
y=\sqrt{3-x}+\arctan(\frac{1}{x})
|
R(x)=(4x^2-14x-6)/(x(x+1)(x-3))
|
R(x)=\frac{4x^{2}-14x-6}{x(x+1)(x-3)}
|
f(x)=sqrt(2x^2-5x+2)
|
f(x)=\sqrt{2x^{2}-5x+2}
|
f(x)=-7x^4
|
f(x)=-7x^{4}
|
f(x)=(x+5)^2-9
|
f(x)=(x+5)^{2}-9
|
y=cos(x-pi/2)-1
|
y=\cos(x-\frac{π}{2})-1
|
f(a)=(sin(a))/a
|
f(a)=\frac{\sin(a)}{a}
|
range of f(x)=(x^2-2x-3)/x
|
range\:f(x)=\frac{x^{2}-2x-3}{x}
|
f(x)=ln(x^2-6x)
|
f(x)=\ln(x^{2}-6x)
|
f(x)=x-22
|
f(x)=x-22
|
f(x)=(sqrt(x))/(sqrt(x)+1)
|
f(x)=\frac{\sqrt{x}}{\sqrt{x}+1}
|
y=-3log_{2}(-x+1)
|
y=-3\log_{2}(-x+1)
|
f(x)=16sqrt(x)
|
f(x)=16\sqrt{x}
|
f(x)=log_{10}(x+3)-4
|
f(x)=\log_{10}(x+3)-4
|
y=3x^{12}
|
y=3x^{12}
|
f(x)=cos(x)x^2
|
f(x)=\cos(x)x^{2}
|
f(x)=(x^2+5x-6)/(x+3)
|
f(x)=\frac{x^{2}+5x-6}{x+3}
|
asymptotes of f(x)=(x^2-2x-8)/x
|
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x}
|
f(x)=3x^2+30x+71
|
f(x)=3x^{2}+30x+71
|
V(t)=10*(1-e^{-t/5})
|
V(t)=10\cdot\:(1-e^{-\frac{t}{5}})
|
f(x)=sqrt(-9)x\sqrt[3]{-343}
|
f(x)=\sqrt{-9}x\sqrt[3]{-343}
|
f(x)=(3^x*2^{x-1})-(2^x*3^{x-1})
|
f(x)=(3^{x}\cdot\:2^{x-1})-(2^{x}\cdot\:3^{x-1})
|
s(t)= 4/(t^2)-5/t-9/5
|
s(t)=\frac{4}{t^{2}}-\frac{5}{t}-\frac{9}{5}
|
f(x)=-x/(x^2+x)
|
f(x)=-\frac{x}{x^{2}+x}
|
g(x)=2^{x^2}-1
|
g(x)=2^{x^{2}}-1
|
f(x)=4x^2-3x-3
|
f(x)=4x^{2}-3x-3
|
g(x)= 4/(x+5)
|
g(x)=\frac{4}{x+5}
|
y=(x^2-4)(x+2x^4)
|
y=(x^{2}-4)(x+2x^{4})
|
midpoint (-5,2)(1,-3)
|
midpoint\:(-5,2)(1,-3)
|
f(x)=-1/4 x+2
|
f(x)=-\frac{1}{4}x+2
|
f(x)=-1/4 x+1
|
f(x)=-\frac{1}{4}x+1
|
f(x)=(8x+1)/(2x-9)
|
f(x)=\frac{8x+1}{2x-9}
|
f(x)=sqrt(x-5)+1
|
f(x)=\sqrt{x-5}+1
|
f(x)=-2x^3+9x^2-12x
|
f(x)=-2x^{3}+9x^{2}-12x
|
f(x)=3(5/3)^x
|
f(x)=3(\frac{5}{3})^{x}
|
f(x)=2sin(2x)sin(x)
|
f(x)=2\sin(2x)\sin(x)
|
f(x)=-log_{3}(x+4)
|
f(x)=-\log_{3}(x+4)
|
f(x)=-log_{3}(x+1)
|
f(x)=-\log_{3}(x+1)
|
h(x)=sqrt(2x-5)
|
h(x)=\sqrt{2x-5}
|
range of f(x)= 1/2
|
range\:f(x)=\frac{1}{2}
|
y=(x+5+3)^2
|
y=(x+5+3)^{2}
|
domain of\&range f(x)= 1/x
|
domain\&range\:f(x)=\frac{1}{x}
|
g(x)=(x+1)/(x^2-1)
|
g(x)=\frac{x+1}{x^{2}-1}
|
f(x)=-sin(2x)+cos(2x)
|
f(x)=-\sin(2x)+\cos(2x)
|
f(r)=8r^2-4r-15
|
f(r)=8r^{2}-4r-15
|
f(x)=-sech(x)tanh(x)
|
f(x)=-\sech(x)\tanh(x)
|
f(x)=7x^2-9x+1
|
f(x)=7x^{2}-9x+1
|
f(y)=(7y^2+5y-2)/y
|
f(y)=\frac{7y^{2}+5y-2}{y}
|
f(x)=1x+4
|
f(x)=1x+4
|
f(x)= 1/(tan(x-5))
|
f(x)=\frac{1}{\tan(x-5)}
|
domain of x^4-x^2
|
domain\:x^{4}-x^{2}
|
range of f(x)=x(x+11)(x-6)
|
range\:f(x)=x(x+11)(x-6)
|
f(x)=arcsec(x)-9x
|
f(x)=\arcsec(x)-9x
|
f(x)=-(2x+3)(4x-5)
|
f(x)=-(2x+3)(4x-5)
|
f(x)=3x^4-2x^3+4x^2-5x+8
|
f(x)=3x^{4}-2x^{3}+4x^{2}-5x+8
|
f(x)=(13)/(18x)
|
f(x)=\frac{13}{18x}
|
f(x)=-2.5x^2-15x+8.7
|
f(x)=-2.5x^{2}-15x+8.7
|
f(x)=log_{3}(3x-1)
|
f(x)=\log_{3}(3x-1)
|
y=sqrt(x+5)-4
|
y=\sqrt{x+5}-4
|
f(-1)=2x^3-3x^2+7
|
f(-1)=2x^{3}-3x^{2}+7
|
f(x)=x^4-3x^2
|
f(x)=x^{4}-3x^{2}
|
f(x)=log_{2}(log_{3}(log_{4}(x)))
|
f(x)=\log_{2}(\log_{3}(\log_{4}(x)))
|
domain of f(x)=(1,-2)(-2,0)(-1,2)(1,3)
|
domain\:f(x)=(1,-2)(-2,0)(-1,2)(1,3)
|
f(x)=x^2-x+0.5
|
f(x)=x^{2}-x+0.5
|
y=5|x|+3
|
y=5\left|x\right|+3
|
y=2x^3-78
|
y=2x^{3}-78
|
f(x)=x^4-6x^2-1
|
f(x)=x^{4}-6x^{2}-1
|
f(x)=-3x^{-4}
|
f(x)=-3x^{-4}
|
f(x)=(x^2+8)/x
|
f(x)=\frac{x^{2}+8}{x}
|
y=x^2-11
|
y=x^{2}-11
|
f(x)= 1/4 x^4
|
f(x)=\frac{1}{4}x^{4}
|
f(x)=2x^2+12x+14
|
f(x)=2x^{2}+12x+14
|
f(x)=x^2+x+56
|
f(x)=x^{2}+x+56
|
domain of f(x)=sqrt(-x+2)
|
domain\:f(x)=\sqrt{-x+2}
|
f(x)=x^2+x+36
|
f(x)=x^{2}+x+36
|
f(x)=x^2+x+30
|
f(x)=x^{2}+x+30
|
y=(x^2+2)/(x-1)
|
y=\frac{x^{2}+2}{x-1}
|
f(x)=0.01x^3-0.5x^2+300x+100
|
f(x)=0.01x^{3}-0.5x^{2}+300x+100
|
f(x)=\sqrt[3]{3x-2}
|
f(x)=\sqrt[3]{3x-2}
|
f(x)=(7x+5)/(9+3x)
|
f(x)=\frac{7x+5}{9+3x}
|
f(x)=24x^7
|
f(x)=24x^{7}
|
f(x)=\sqrt[3]{x/(x^2-5x+6)}
|
f(x)=\sqrt[3]{\frac{x}{x^{2}-5x+6}}
|
y=(3ln(4^{5x})-8)^6
|
y=(3\ln(4^{5x})-8)^{6}
|