inverse y/(y+2)
|
inverse\:\frac{y}{y+2}
|
midpoint (5,-6)(-1,2)
|
midpoint\:(5,-6)(-1,2)
|
inverse f(x)=5+4/x
|
inverse\:f(x)=5+\frac{4}{x}
|
slope intercept x-3y=12
|
slope\:intercept\:x-3y=12
|
inverse f(x)=(\sqrt[5]{x})/5
|
inverse\:f(x)=\frac{\sqrt[5]{x}}{5}
|
domain f(x)=(x+8)/(x^2-1)
|
domain\:f(x)=\frac{x+8}{x^{2}-1}
|
parity y=sqrt(2x^2-1)
|
parity\:y=\sqrt{2x^{2}-1}
|
asymptotes f(x)=(x^2-2x-15)/(x^3-5x^2+x-5)
|
asymptotes\:f(x)=\frac{x^{2}-2x-15}{x^{3}-5x^{2}+x-5}
|
inverse (4x^2+1)/(2x)
|
inverse\:\frac{4x^{2}+1}{2x}
|
domain (x-8)/(2x^2)
|
domain\:\frac{x-8}{2x^{2}}
|
asymptotes f(x)=2+(x^2)/(x^4+1)
|
asymptotes\:f(x)=2+\frac{x^{2}}{x^{4}+1}
|
inverse x^2+3x-4
|
inverse\:x^{2}+3x-4
|
inflection points 2x^3+6x^2+3
|
inflection\:points\:2x^{3}+6x^{2}+3
|
inverse f(x)=2-9x^3
|
inverse\:f(x)=2-9x^{3}
|
range (2x)/(2x-4)
|
range\:\frac{2x}{2x-4}
|
extreme points f(x)=5x^2+6x-6
|
extreme\:points\:f(x)=5x^{2}+6x-6
|
parallel 2x+y=3,\at (4,1)
|
parallel\:2x+y=3,\at\:(4,1)
|
domain f(x)=5-x^2
|
domain\:f(x)=5-x^{2}
|
range f(x)=(x^2-2x-3)/x
|
range\:f(x)=\frac{x^{2}-2x-3}{x}
|
asymptotes f(x)=(x^2-2x-8)/x
|
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x}
|
midpoint (-5,2)(1,-3)
|
midpoint\:(-5,2)(1,-3)
|
range f(x)= 1/2
|
range\:f(x)=\frac{1}{2}
|
domain x^4-x^2
|
domain\:x^{4}-x^{2}
|
range f(x)=x(x+11)(x-6)
|
range\:f(x)=x(x+11)(x-6)
|
domain f(x)=(1,-2)(-2,0)(-1,2)(1,3)
|
domain\:f(x)=(1,-2)(-2,0)(-1,2)(1,3)
|
domain f(x)=sqrt(-x+2)
|
domain\:f(x)=\sqrt{-x+2}
|
inflection points sqrt(|x^2-3x+2|)
|
inflection\:points\:\sqrt{|x^{2}-3x+2|}
|
domain f(x)=(6sqrt(3x))/((sqrt(3x))^2-9)
|
domain\:f(x)=\frac{6\sqrt{3x}}{(\sqrt{3x})^{2}-9}
|
asymptotes (x^2-64)/(x+4)
|
asymptotes\:\frac{x^{2}-64}{x+4}
|
intercepts f(x)=log_{256}(x-x^2)
|
intercepts\:f(x)=\log_{256}(x-x^{2})
|
inverse f(x)=5-5x
|
inverse\:f(x)=5-5x
|
intercepts f(x)=(3x^2+4x-4)/(x^3-4x^2)
|
intercepts\:f(x)=\frac{3x^{2}+4x-4}{x^{3}-4x^{2}}
|
f(x)=x^3-3x^2+1
|
f(x)=x^{3}-3x^{2}+1
|
symmetry x^2+x+2
|
symmetry\:x^{2}+x+2
|
inverse ((\sqrt[5]{x})/7+5)^3
|
inverse\:(\frac{\sqrt[5]{x}}{7}+5)^{3}
|
inverse ln(x+5)
|
inverse\:\ln(x+5)
|
critical points f(x)=x^2(x-3)
|
critical\:points\:f(x)=x^{2}(x-3)
|
domain f(x)=((x^2-1))/((x+1))
|
domain\:f(x)=\frac{(x^{2}-1)}{(x+1)}
|
extreme points f(x)=-x^3-3x^2+9x+1
|
extreme\:points\:f(x)=-x^{3}-3x^{2}+9x+1
|
inverse y=-x^2-3
|
inverse\:y=-x^{2}-3
|
asymptotes (3x^2)/(2x+2)
|
asymptotes\:\frac{3x^{2}}{2x+2}
|
domain f(x)= 1/(sqrt(2-x))
|
domain\:f(x)=\frac{1}{\sqrt{2-x}}
|
critical points f(x)=2xe^{5x}
|
critical\:points\:f(x)=2xe^{5x}
|
intercepts f(x)=(5x^2)/(x^2-4)
|
intercepts\:f(x)=\frac{5x^{2}}{x^{2}-4}
|
intercepts f(x)=-8sin(10x-(pi)/4)
|
intercepts\:f(x)=-8\sin(10x-\frac{\pi}{4})
|
inverse f(x)=5x+2
|
inverse\:f(x)=5x+2
|
critical points (\sqrt[3]{(x-1)^2})
|
critical\:points\:(\sqrt[3]{(x-1)^{2}})
|
periodicity f(x)= 1/2 cos(4x)
|
periodicity\:f(x)=\frac{1}{2}\cos(4x)
|
domain (2x+2)/(x^2-1)
|
domain\:\frac{2x+2}{x^{2}-1}
|
critical points y=x^2+4
|
critical\:points\:y=x^{2}+4
|
inverse f(x)= 6/(x^2+1)
|
inverse\:f(x)=\frac{6}{x^{2}+1}
|
domain sqrt(2-7x)
|
domain\:\sqrt{2-7x}
|
extreme points 0.1729x+0.1522x^2-0.0374x^3
|
extreme\:points\:0.1729x+0.1522x^{2}-0.0374x^{3}
|
critical points (x(x-1)(x-2)(x-3))/(24)
|
critical\:points\:\frac{x(x-1)(x-2)(x-3)}{24}
|
range-4
|
range\:-4
|
inverse f(x)=x^2-6x+9
|
inverse\:f(x)=x^{2}-6x+9
|
domain f(x)=sqrt(6-2x)
|
domain\:f(x)=\sqrt{6-2x}
|
slope y=-4x-3y
|
slope\:y=-4x-3y
|
intercepts f(x)= 1/4 (x+2)^2-9
|
intercepts\:f(x)=\frac{1}{4}(x+2)^{2}-9
|
range f(x)=sqrt(5x-20)
|
range\:f(x)=\sqrt{5x-20}
|
slope intercept 4x+y=7
|
slope\:intercept\:4x+y=7
|
domain f(x)=sqrt(2x-3)
|
domain\:f(x)=\sqrt{2x-3}
|
intercepts sqrt((x+4)/(2-x))
|
intercepts\:\sqrt{\frac{x+4}{2-x}}
|
domain f(x)=(120+4x)/x
|
domain\:f(x)=\frac{120+4x}{x}
|
domain f(x)=(x+5)/(15+sqrt(x^2-64))
|
domain\:f(x)=\frac{x+5}{15+\sqrt{x^{2}-64}}
|
distance (-5,1)(7,8)
|
distance\:(-5,1)(7,8)
|
inverse f(x)= 1/x+1/(x^2)
|
inverse\:f(x)=\frac{1}{x}+\frac{1}{x^{2}}
|
extreme points f(x)=4-6x^2
|
extreme\:points\:f(x)=4-6x^{2}
|
domain f(x)=((64-e^{x^2}))/(1-e^{64-x^2)}
|
domain\:f(x)=\frac{(64-e^{x^{2}})}{1-e^{64-x^{2}}}
|
domain (x(x+5))/7
|
domain\:\frac{x(x+5)}{7}
|
inverse sqrt(x)
|
inverse\:\sqrt{x}
|
slope intercept y= 3/5 x+4/7
|
slope\:intercept\:y=\frac{3}{5}x+\frac{4}{7}
|
intercepts 3/(x+4)
|
intercepts\:\frac{3}{x+4}
|
inverse (x+2)^3-6
|
inverse\:(x+2)^{3}-6
|
amplitude sin(4x)
|
amplitude\:\sin(4x)
|
domain f(x)= 1/((x+3))
|
domain\:f(x)=\frac{1}{(x+3)}
|
domain f(x)=log_{2}(x-3)
|
domain\:f(x)=\log_{2}(x-3)
|
inverse f(x)=ln(x+6)
|
inverse\:f(x)=\ln(x+6)
|
inverse 1/x+3
|
inverse\:\frac{1}{x}+3
|
domain x^2+x-2
|
domain\:x^{2}+x-2
|
inverse f(x)=160x-16x^2
|
inverse\:f(x)=160x-16x^{2}
|
asymptotes f(x)=(4x^5)/(x^6-3)
|
asymptotes\:f(x)=\frac{4x^{5}}{x^{6}-3}
|
domain y=sqrt(1-x)
|
domain\:y=\sqrt{1-x}
|
inverse y= 1/2 x-6
|
inverse\:y=\frac{1}{2}x-6
|
asymptotes (x-3)/(x^2-3x-18)
|
asymptotes\:\frac{x-3}{x^{2}-3x-18}
|
inflection points f(x)=(2x^2)/(x^2-1)
|
inflection\:points\:f(x)=\frac{2x^{2}}{x^{2}-1}
|
asymptotes f(x)=((x^4+4x^3-21x^2))/(2x+6)
|
asymptotes\:f(x)=\frac{(x^{4}+4x^{3}-21x^{2})}{2x+6}
|
domain 1/(X^2)
|
domain\:\frac{1}{X^{2}}
|
inverse cos(x-(pi)/2)
|
inverse\:\cos(x-\frac{\pi}{2})
|
domain (2x)/(x^2+1)
|
domain\:\frac{2x}{x^{2}+1}
|
domain f(x)=y=e^{-x}-1
|
domain\:f(x)=y=e^{-x}-1
|
perpendicular y=-1
|
perpendicular\:y=-1
|
domain (x^2+8x-9)/(x^2+3x-4)
|
domain\:\frac{x^{2}+8x-9}{x^{2}+3x-4}
|
range f(x)=3ln(x)+4
|
range\:f(x)=3\ln(x)+4
|
domain f(x)=-4x+1
|
domain\:f(x)=-4x+1
|
inverse f(x)=100-2x
|
inverse\:f(x)=100-2x
|
parity (2-x^2)/(1+x^4)
|
parity\:\frac{2-x^{2}}{1+x^{4}}
|
range (5x)/(x^2-3x-4)
|
range\:\frac{5x}{x^{2}-3x-4}
|
critical points f(x)=x^3-9x^2+15x-6
|
critical\:points\:f(x)=x^{3}-9x^{2}+15x-6
|
extreme points f(x)= a/(x^2)+x
|
extreme\:points\:f(x)=\frac{a}{x^{2}}+x
|