domain sqrt(x^2-4x)
|
domain\:\sqrt{x^{2}-4x}
|
domain xsqrt(8-x^2)
|
domain\:x\sqrt{8-x^{2}}
|
domain y=(3x^2)/(x+5)
|
domain\:y=\frac{3x^{2}}{x+5}
|
domain f(x)=3sin(4x)
|
domain\:f(x)=3\sin(4x)
|
domain 1/(|x^2-7|)
|
domain\:\frac{1}{\left|x^{2}-7\right|}
|
midpoint (0,6)(6,14)
|
midpoint\:(0,6)(6,14)
|
domain xe^{-6x}
|
domain\:xe^{-6x}
|
domain f(x)=(x+9)/((x-1)(x-7))
|
domain\:f(x)=\frac{x+9}{(x-1)(x-7)}
|
domain f(x)=7ln(x)+π
|
domain\:f(x)=7\ln(x)+π
|
domain y=2cos(x+4)-2
|
domain\:y=2\cos(x+4)-2
|
domain 1/(sin(x)cos(x))
|
domain\:\frac{1}{\sin(x)\cos(x)}
|
domain f(x)= 1/(sqrt(49-x^2))
|
domain\:f(x)=\frac{1}{\sqrt{49-x^{2}}}
|
domain y=(sqrt(x+2))/x
|
domain\:y=\frac{\sqrt{x+2}}{x}
|
domain 1/(log_{x)(2)}
|
domain\:\frac{1}{\log_{x}(2)}
|
domain f(x)=sqrt(x-2)+sqrt(2-x)
|
domain\:f(x)=\sqrt{x-2}+\sqrt{2-x}
|
domain p(x)=sqrt(x-1)+2
|
domain\:p(x)=\sqrt{x-1}+2
|
inflection points (2x^2)/(x^2+2)
|
inflection\:points\:\frac{2x^{2}}{x^{2}+2}
|
domain f(x)=(x+9)/(x-8)
|
domain\:f(x)=\frac{x+9}{x-8}
|
domain (3-2x)/(3x+2)
|
domain\:\frac{3-2x}{3x+2}
|
domain 1/(sqrt(9-x))
|
domain\:\frac{1}{\sqrt{9-x}}
|
domain f(x)=sqrt((x-2))+5
|
domain\:f(x)=\sqrt{(x-2)}+5
|
domain ln(2+x)
|
domain\:\ln(2+x)
|
domain f(x)=y=sqrt(x+1)
|
domain\:f(x)=y=\sqrt{x+1}
|
domain f(x)=4-x^2,-2<= x<= 2
|
domain\:f(x)=4-x^{2},-2\le\:x\le\:2
|
domain (x^2-6x+5)/9
|
domain\:\frac{x^{2}-6x+5}{9}
|
domain f(x)=(x-4)(x^2-8x-32)
|
domain\:f(x)=(x-4)(x^{2}-8x-32)
|
domain f(x)=-2.907+0.2663x-0.002502x^2
|
domain\:f(x)=-2.907+0.2663x-0.002502x^{2}
|
asymptotes 1/(x+3)
|
asymptotes\:\frac{1}{x+3}
|
slope 2y=4x+5
|
slope\:2y=4x+5
|
distance (1,1)(9,7)
|
distance\:(1,1)(9,7)
|
range (2-5x)sqrt(x)
|
range\:(2-5x)\sqrt{x}
|
domain f(x)=x(x-4)^3
|
domain\:f(x)=x(x-4)^{3}
|
domain y=3cot(x)
|
domain\:y=3\cot(x)
|
domain 2x^3+3x^2+12x-4
|
domain\:2x^{3}+3x^{2}+12x-4
|
domain x^{3/2}
|
domain\:x^{\frac{3}{2}}
|
domain f(x)=(ln(2))/(1-e^{x^2-4)}+ln(x^2-3x)+sqrt(x^2+1)
|
domain\:f(x)=\frac{\ln(2)}{1-e^{x^{2}-4}}+\ln(x^{2}-3x)+\sqrt{x^{2}+1}
|
domain (x^2-4x)/9
|
domain\:\frac{x^{2}-4x}{9}
|
domain (5x)/(8x-3)
|
domain\:\frac{5x}{8x-3}
|
domain y=log_{3}(x^2-9)
|
domain\:y=\log_{3}(x^{2}-9)
|
domain y=x^2+8x+15
|
domain\:y=x^{2}+8x+15
|
domain f(x)=y=sqrt(x-5)
|
domain\:f(x)=y=\sqrt{x-5}
|
inverse f(x)=(2+\sqrt[3]{4x})/2
|
inverse\:f(x)=\frac{2+\sqrt[3]{4x}}{2}
|
domain y=log_{3}(x^2-1)
|
domain\:y=\log_{3}(x^{2}-1)
|
domain-3x+9
|
domain\:-3x+9
|
domain f(x)=log_{2}(3-x)
|
domain\:f(x)=\log_{2}(3-x)
|
domain f(x)=(x^2-4)/(x^2+6)
|
domain\:f(x)=\frac{x^{2}-4}{x^{2}+6}
|
domain (2x^2)/(ln|x|-2)
|
domain\:\frac{2x^{2}}{\ln\left|x\right|-2}
|
domain f(x)=(x+2)/(x^2-49x)
|
domain\:f(x)=\frac{x+2}{x^{2}-49x}
|
domain f(x)=sqrt(4-x^2)+g(x)=(x+2)/(sqrt(11-x))
|
domain\:f(x)=\sqrt{4-x^{2}}+g(x)=\frac{x+2}{\sqrt{11-x}}
|
domain \sqrt[3]{2x+8}
|
domain\:\sqrt[3]{2x+8}
|
domain x^3-25x
|
domain\:x^{3}-25x
|
domain f(x)=(x+1)/(x^2-4x)
|
domain\:f(x)=\frac{x+1}{x^{2}-4x}
|
extreme points f(x)=3cos(x)
|
extreme\:points\:f(x)=3\cos(x)
|
domain y=-(log_{2}(x))+3.16
|
domain\:y=-(\log_{2}(x))+3.16
|
domain+y=sqrt(100-x^2)
|
domain\:+y=\sqrt{100-x^{2}}
|
domain f(x)=(x+4)/x
|
domain\:f(x)=\frac{x+4}{x}
|
domain f(x)=(6x^2-x^4)/9
|
domain\:f(x)=\frac{6x^{2}-x^{4}}{9}
|
domain 5/(x^2-1)
|
domain\:\frac{5}{x^{2}-1}
|
domain f(x)=sqrt(3^{x-2)-1}
|
domain\:f(x)=\sqrt{3^{x-2}-1}
|
domain f(x)=-1/2*log_{10}(-2-x)+2
|
domain\:f(x)=-\frac{1}{2}\cdot\:\log_{10}(-2-x)+2
|
domain f(x)=sqrt((4-x)/(|x|-1))
|
domain\:f(x)=\sqrt{\frac{4-x}{\left|x\right|-1}}
|
domain 1/(sqrt(x)(x-1))
|
domain\:\frac{1}{\sqrt{x}(x-1)}
|
domain f(x)=sqrt(10^2+x^2)+sqrt(10^2+(5-x)^2)
|
domain\:f(x)=\sqrt{10^{2}+x^{2}}+\sqrt{10^{2}+(5-x)^{2}}
|
intercepts f(x)=y=-3x-2
|
intercepts\:f(x)=y=-3x-2
|
domain \sqrt[3]{2x+1}
|
domain\:\sqrt[3]{2x+1}
|
domain f(x)=(2x)/(5x-1)
|
domain\:f(x)=\frac{2x}{5x-1}
|
domain (x^2+7x+12)/(x^2-3x-10)
|
domain\:\frac{x^{2}+7x+12}{x^{2}-3x-10}
|
domain f(x)=cosh^2(ln(x)-1)
|
domain\:f(x)=\cosh^{2}(\ln(x)-1)
|
domain f(x)=(2x)/((x^2-4))
|
domain\:f(x)=\frac{2x}{(x^{2}-4)}
|
domain x/(x^2+3x)
|
domain\:\frac{x}{x^{2}+3x}
|
domain 8+5ln(2x+3)
|
domain\:8+5\ln(2x+3)
|
domain f(t)=sqrt(4t+5)
|
domain\:f(t)=\sqrt{4t+5}
|
domain g(x)=log_{10}(4x-x^2)
|
domain\:g(x)=\log_{10}(4x-x^{2})
|
domain f(x)=4x^2+3x+1
|
domain\:f(x)=4x^{2}+3x+1
|
parallel y=-3x+5
|
parallel\:y=-3x+5
|
domain f(x)=(-3)/((x+1)^2)
|
domain\:f(x)=\frac{-3}{(x+1)^{2}}
|
domain f(x)=-2x^2+8x-6
|
domain\:f(x)=-2x^{2}+8x-6
|
domain f(x)= 1/t+sqrt(4-t)
|
domain\:f(x)=\frac{1}{t}+\sqrt{4-t}
|
domain f(x)=log_{2}(2^{2x})
|
domain\:f(x)=\log_{2}(2^{2x})
|
domain 1/(2+sqrt(x))
|
domain\:\frac{1}{2+\sqrt{x}}
|
domain f(x)=(2x^2-13x+15)/(sqrt(x-1))
|
domain\:f(x)=\frac{2x^{2}-13x+15}{\sqrt{x-1}}
|
domain 2^{x+2}+1
|
domain\:2^{x+2}+1
|
domain sqrt(1/(x-2))
|
domain\:\sqrt{\frac{1}{x-2}}
|
domain f(x)=|x-3|+4
|
domain\:f(x)=\left|x-3\right|+4
|
domain f(x)=(7-2x^2)/(3-2x)
|
domain\:f(x)=\frac{7-2x^{2}}{3-2x}
|
inverse f(x)=-2x+1
|
inverse\:f(x)=-2x+1
|
domain (3x^2)/(x^2+1)
|
domain\:\frac{3x^{2}}{x^{2}+1}
|
domain ((3x^2+x))/(x^2+4)
|
domain\:\frac{(3x^{2}+x)}{x^{2}+4}
|
domain f(x)=(1/(sqrt(2)))^{x-2}+1
|
domain\:f(x)=(\frac{1}{\sqrt{2}})^{x-2}+1
|
domain f(p)=(p-3)/(p^2+4p-21)
|
domain\:f(p)=\frac{p-3}{p^{2}+4p-21}
|
domain f(x)=(x-7)/x
|
domain\:f(x)=\frac{x-7}{x}
|
domain f(x)= 4/(3n^2-n-2)
|
domain\:f(x)=\frac{4}{3n^{2}-n-2}
|
domain f(x)= 1/(sqrt(t+7))
|
domain\:f(x)=\frac{1}{\sqrt{t+7}}
|
domain f(x)=sqrt(x^4-16)
|
domain\:f(x)=\sqrt{x^{4}-16}
|
domain 6^x+2
|
domain\:6^{x}+2
|
domain f(x)=(2x)/(3x-4)
|
domain\:f(x)=\frac{2x}{3x-4}
|
domain 2x^3-30x^2+126x-98
|
domain\:2x^{3}-30x^{2}+126x-98
|
domain X^2-1
|
domain\:X^{2}-1
|
domain (4x)/(x^2-1)
|
domain\:\frac{4x}{x^{2}-1}
|
domain f(x)=sqrt(x+25)
|
domain\:f(x)=\sqrt{x+25}
|