f(t)= 1/t
|
f(t)=\frac{1}{t}
|
y=|x-4|
|
y=\left|x-4\right|
|
f(x)=3x^2+2x-4
|
f(x)=3x^{2}+2x-4
|
critical points of 13x^3+13/2 x^2+36x+7
|
critical\:points\:13x^{3}+\frac{13}{2}x^{2}+36x+7
|
y=6x-11
|
y=6x-11
|
f(c)=e^c
|
f(c)=e^{c}
|
y=sqrt(3x)
|
y=\sqrt{3x}
|
f(x)=4x^6
|
f(x)=4x^{6}
|
f(x)=-x^2+4x+5
|
f(x)=-x^{2}+4x+5
|
y=2x^2-3x+1
|
y=2x^{2}-3x+1
|
f(x)=ln(x+5)
|
f(x)=\ln(x+5)
|
y=x^2-12x+3
|
y=x^{2}-12x+3
|
f(x)=x^2-8x+3
|
f(x)=x^{2}-8x+3
|
f(x)=sin(2x)-sin(x)
|
f(x)=\sin(2x)-\sin(x)
|
inverse of f(x)=-(x+3)^2-4
|
inverse\:f(x)=-(x+3)^{2}-4
|
f(x)=ln^3(x)
|
f(x)=\ln^{3}(x)
|
y=xcos(x)
|
y=x\cos(x)
|
y=x^2+4x-1
|
y=x^{2}+4x-1
|
f(s)=s^2
|
f(s)=s^{2}
|
f(x)=x^2+4x+20
|
f(x)=x^{2}+4x+20
|
f(x)=3+x
|
f(x)=3+x
|
y=-1/2 x+5
|
y=-\frac{1}{2}x+5
|
y=-3/2 x+1
|
y=-\frac{3}{2}x+1
|
f(n)=2^n
|
f(n)=2^{n}
|
f(x)=(x^2-4)/(x+2)
|
f(x)=\frac{x^{2}-4}{x+2}
|
intercepts of f(x)=-2(x-2)^2+5
|
intercepts\:f(x)=-2(x-2)^{2}+5
|
f(a)=3a^2
|
f(a)=3a^{2}
|
f(x)=(x-3)^2+2
|
f(x)=(x-3)^{2}+2
|
f(x)=2log_{2}(x)
|
f(x)=2\log_{2}(x)
|
y=3^x+2
|
y=3^{x}+2
|
f(y)= 1/y
|
f(y)=\frac{1}{y}
|
f(x)=x+sqrt(x)
|
f(x)=x+\sqrt{x}
|
f(x)=cosh(2x)
|
f(x)=\cosh(2x)
|
f(s)=s^2-2s+2
|
f(s)=s^{2}-2s+2
|
f(y)=sqrt(1-y^2)
|
f(y)=\sqrt{1-y^{2}}
|
f(x)=x^2+cos(1-x^3)
|
f(x)=x^{2}+\cos(1-x^{3})
|
slope of m=-9,(7,9)
|
slope\:m=-9,(7,9)
|
f(x)= 5/(x-3)
|
f(x)=\frac{5}{x-3}
|
y=5x+8
|
y=5x+8
|
f(t)=cos(3t)
|
f(t)=\cos(3t)
|
f(t)=sqrt(t)
|
f(t)=\sqrt{t}
|
f(x)=x^3+4x-2
|
f(x)=x^{3}+4x-2
|
y=sqrt(4-x)
|
y=\sqrt{4-x}
|
f(x)=(x^2+1)(x^4-x^2+1)
|
f(x)=(x^{2}+1)(x^{4}-x^{2}+1)
|
f(x)=log_{10}(log_{10}(x))
|
f(x)=\log_{10}(\log_{10}(x))
|
f(x)=arctan(3x)
|
f(x)=\arctan(3x)
|
y=x^2sin(x)
|
y=x^{2}\sin(x)
|
intercepts of f(x)=2x^2-4x-1
|
intercepts\:f(x)=2x^{2}-4x-1
|
y= 3/2 x
|
y=\frac{3}{2}x
|
f(x)=x^3-12x
|
f(x)=x^{3}-12x
|
f(x)=sin^2(+cos^2(x))
|
f(x)=\sin^{2}(+\cos^{2}(x))
|
f(x)= 1/(1-x^2)-,1<x<1
|
f(x)=\frac{1}{1-x^{2}}-,1<x<1
|
y=16-x^2
|
y=16-x^{2}
|
f(x)=x^2-x+12
|
f(x)=x^{2}-x+12
|
f(x)=(x+1)/(x^2-1)
|
f(x)=\frac{x+1}{x^{2}-1}
|
f(x)=(x^2-4)^{2/3}
|
f(x)=(x^{2}-4)^{\frac{2}{3}}
|
f(x)=x^2-6x-1
|
f(x)=x^{2}-6x-1
|
y=x^2-2x+8
|
y=x^{2}-2x+8
|
range of-3sin((pi)/2 x)+1
|
range\:-3\sin(\frac{\pi}{2}x)+1
|
f(x)=x^2+6x-4
|
f(x)=x^{2}+6x-4
|
f(x)=7x+2
|
f(x)=7x+2
|
f(x)= x/(x^2+9)
|
f(x)=\frac{x}{x^{2}+9}
|
f(d)=d^2
|
f(d)=d^{2}
|
f(x)=x^2+10x+23
|
f(x)=x^{2}+10x+23
|
y=5x+7
|
y=5x+7
|
y=2(x-2)^2-5
|
y=2(x-2)^{2}-5
|
y=6x-4
|
y=6x-4
|
f(x)=x^2+5x
|
f(x)=x^{2}+5x
|
y=x^2+4x-3
|
y=x^{2}+4x-3
|
intercepts of f(x)=(9-3x)/(x-5)
|
intercepts\:f(x)=\frac{9-3x}{x-5}
|
midpoint (6,4)(2,8)
|
midpoint\:(6,4)(2,8)
|
y=|x|+4
|
y=\left|x\right|+4
|
f(x)=|x|-3
|
f(x)=\left|x\right|-3
|
V(r)= 4/3 pir^3
|
V(r)=\frac{4}{3}πr^{3}
|
f(x)=\sqrt[x]{x}
|
f(x)=\sqrt[x]{x}
|
f(x)= 7/x
|
f(x)=\frac{7}{x}
|
y=b^x
|
y=b^{x}
|
f(x)=(x-1)^2-4
|
f(x)=(x-1)^{2}-4
|
y=x^2-7x+10
|
y=x^{2}-7x+10
|
f(θ)=1-cos(θ)
|
f(θ)=1-\cos(θ)
|
f(x)=x^5+x+1
|
f(x)=x^{5}+x+1
|
parity f(x)=5x^4-6x^3
|
parity\:f(x)=5x^{4}-6x^{3}
|
f(x)=15+3x^2-x^4
|
f(x)=15+3x^{2}-x^{4}
|
f(n)=sin(2pin)
|
f(n)=\sin(2πn)
|
f(x)=x^2-8x+7
|
f(x)=x^{2}-8x+7
|
f(x)=4x-8
|
f(x)=4x-8
|
f(x)=log_{2}(x+4)
|
f(x)=\log_{2}(x+4)
|
f(x)=x^2+5x-3
|
f(x)=x^{2}+5x-3
|
f(θ)=cos(θ/2)
|
f(θ)=\cos(\frac{θ}{2})
|
y=6x-3
|
y=6x-3
|
f(x)=(sin(2x))/2
|
f(x)=\frac{\sin(2x)}{2}
|
f(x)=cos(x)cot(x)
|
f(x)=\cos(x)\cot(x)
|
inverse of x^2+4x-3
|
inverse\:x^{2}+4x-3
|
f(x)=sec(x^2)
|
f(x)=\sec(x^{2})
|
f(x)= 1/2 x
|
f(x)=\frac{1}{2}x
|
f(q)=q
|
f(q)=q
|
f(x)=(cos(x))/(sec(x)+tan(x))
|
f(x)=\frac{\cos(x)}{\sec(x)+\tan(x)}
|
p(x)=2x-1
|
p(x)=2x-1
|
f(x)=x^3+2x^2+1
|
f(x)=x^{3}+2x^{2}+1
|
f(x)=(1/3)^x+a
|
f(x)=(\frac{1}{3})^{x}+a
|