r(θ)=2+2cos(θ)
|
r(θ)=2+2\cos(θ)
|
y= 1/3 x+4
|
y=\frac{1}{3}x+4
|
f(x)=sqrt(x^2+3)
|
f(x)=\sqrt{x^{2}+3}
|
range of 7x-6
|
range\:7x-6
|
f(x)=sqrt(x^2-2)
|
f(x)=\sqrt{x^{2}-2}
|
y=3sqrt(x)
|
y=3\sqrt{x}
|
f(x)=3x^6
|
f(x)=3x^{6}
|
f(x)=2-3x
|
f(x)=2-3x
|
f(a)=2a^2
|
f(a)=2a^{2}
|
y=x^4-4x^3
|
y=x^{4}-4x^{3}
|
f(x)=3x+9
|
f(x)=3x+9
|
f(x)=3e^{2x}
|
f(x)=3e^{2x}
|
f(x)=x^3cos(x)
|
f(x)=x^{3}\cos(x)
|
f(x)= x/(x^2+2)
|
f(x)=\frac{x}{x^{2}+2}
|
midpoint (-5,-6),(-2,-3)
|
midpoint\:(-5,-6),(-2,-3)
|
f(x)=7x+4
|
f(x)=7x+4
|
y=x^{1/2}
|
y=x^{\frac{1}{2}}
|
y=x|x|
|
y=x\left|x\right|
|
y= 1/4 x+1
|
y=\frac{1}{4}x+1
|
f(x)=sqrt(x^2+16)
|
f(x)=\sqrt{x^{2}+16}
|
f(x)=arctan(sqrt(x))
|
f(x)=\arctan(\sqrt{x})
|
f(x)=x+ln(x)
|
f(x)=x+\ln(x)
|
f(x)=tan(x^2)
|
f(x)=\tan(x^{2})
|
f(x)=log_{10}(x+2)
|
f(x)=\log_{10}(x+2)
|
f(x)=e^{2x^2}
|
f(x)=e^{2x^{2}}
|
line (-2,-3)(3,4)
|
line\:(-2,-3)(3,4)
|
f(x)=x^3ln(x)
|
f(x)=x^{3}\ln(x)
|
f(x)=3cos(2x)
|
f(x)=3\cos(2x)
|
f(x)=x*cos(x)
|
f(x)=x\cdot\:\cos(x)
|
f(x)=-2x-4
|
f(x)=-2x-4
|
y=x^{1/3}
|
y=x^{\frac{1}{3}}
|
y=(x-5)^2
|
y=(x-5)^{2}
|
y=4x+9
|
y=4x+9
|
y= 3/4 x+2
|
y=\frac{3}{4}x+2
|
f(x)=(x+1)/2
|
f(x)=\frac{x+1}{2}
|
f(x)=(x-3)/(x^2+4)
|
f(x)=\frac{x-3}{x^{2}+4}
|
extreme points of f(x)=x-(64x)/(x+4)
|
extreme\:points\:f(x)=x-\frac{64x}{x+4}
|
f(x)=3x^2+10
|
f(x)=3x^{2}+10
|
f(x)=sin^2(x)cos(x)
|
f(x)=\sin^{2}(x)\cos(x)
|
f(x)=sqrt(cos(x))
|
f(x)=\sqrt{\cos(x)}
|
f(x)=x^2-10x+34
|
f(x)=x^{2}-10x+34
|
f(n)=sin(2npi)
|
f(n)=\sin(2nπ)
|
f(x)=7x^4
|
f(x)=7x^{4}
|
f(x)=x^3+x+4
|
f(x)=x^{3}+x+4
|
f(x)=2x^3-3x^2-12x
|
f(x)=2x^{3}-3x^{2}-12x
|
y=4x-10
|
y=4x-10
|
f(x)=(x^2)/3
|
f(x)=\frac{x^{2}}{3}
|
line m=3,\at (-6,7)
|
line\:m=3,\at\:(-6,7)
|
f
|
f
|
f(x)= 3/(x-1)
|
f(x)=\frac{3}{x-1}
|
f(x)=2e^{3x}
|
f(x)=2e^{3x}
|
f(x)=e^{-3x}
|
f(x)=e^{-3x}
|
y=-8x
|
y=-8x
|
f(x)= 4/(x-2)
|
f(x)=\frac{4}{x-2}
|
y=3x^2-27x+8
|
y=3x^{2}-27x+8
|
f(t)=sin(t)cos(t)
|
f(t)=\sin(t)\cos(t)
|
f(x)=5-3x
|
f(x)=5-3x
|
f(x)=6x+2
|
f(x)=6x+2
|
domain of f(x)=-3^{x+2}
|
domain\:f(x)=-3^{x+2}
|
asymptotes of f(x)=4^{x+2}+6
|
asymptotes\:f(x)=4^{x+2}+6
|
f(x)=-5x+3
|
f(x)=-5x+3
|
y=x^2+3x+2
|
y=x^{2}+3x+2
|
y=6x+3
|
y=6x+3
|
f(x)=arcsin(cos(x))
|
f(x)=\arcsin(\cos(x))
|
f(x)=2x^2-8x+6
|
f(x)=2x^{2}-8x+6
|
y=-1/2 x-4
|
y=-\frac{1}{2}x-4
|
f(x)=3x-x^2
|
f(x)=3x-x^{2}
|
f(φ)=φ
|
f(φ)=φ
|
f(x)=12x^3
|
f(x)=12x^{3}
|
y=-4x-5
|
y=-4x-5
|
line (2,1),(5,3)
|
line\:(2,1),(5,3)
|
y=-5x-2
|
y=-5x-2
|
f(x)=x^3-9x
|
f(x)=x^{3}-9x
|
f(x)=x^3-2x
|
f(x)=x^{3}-2x
|
y= 2/3 x-3
|
y=\frac{2}{3}x-3
|
f(x,y)=(-3+4)/(-3-4)
|
f(x,y)=\frac{-3+4}{-3-4}
|
f(x)=5e^x
|
f(x)=5e^{x}
|
f(x)=6x^6
|
f(x)=6x^{6}
|
y=|x+1|
|
y=\left|x+1\right|
|
y=-1/20 x^2
|
y=-\frac{1}{20}x^{2}
|
f(x)=sinh(2x)
|
f(x)=\sinh(2x)
|
extreme points of f(x)=2x^2-8
|
extreme\:points\:f(x)=2x^{2}-8
|
f(x)=coth(x)
|
f(x)=\coth(x)
|
f(x)=3x^2-2x-2
|
f(x)=3x^{2}-2x-2
|
f(x)=log_{100}(x)
|
f(x)=\log_{100}(x)
|
y=log_{a}(x)
|
y=\log_{a}(x)
|
y=2^{x+1}
|
y=2^{x+1}
|
y=2^x-1
|
y=2^{x}-1
|
y=xe^xcos(2x)
|
y=xe^{x}\cos(2x)
|
y=-5x-1
|
y=-5x-1
|
f(x)=x^3-3x^2+4
|
f(x)=x^{3}-3x^{2}+4
|
f(x)=log_{a}(x)
|
f(x)=\log_{a}(x)
|
asymptotes of f(x)=(10-2x^2)/(x^2-4)
|
asymptotes\:f(x)=\frac{10-2x^{2}}{x^{2}-4}
|
f(x)=xsqrt(1-x^2)
|
f(x)=x\sqrt{1-x^{2}}
|
f(θ)=cos(θ)+sin(θ)
|
f(θ)=\cos(θ)+\sin(θ)
|
y=-x^2-5x+12
|
y=-x^{2}-5x+12
|
f(x)=cos(2arccos(x))
|
f(x)=\cos(2\arccos(x))
|
y=2x^2+24x-4
|
y=2x^{2}+24x-4
|
f(x)=tan^2(x)+cot^2(x)
|
f(x)=\tan^{2}(x)+\cot^{2}(x)
|
f(x)=x^2+8x+10
|
f(x)=x^{2}+8x+10
|