domain y=(1/3)^x
|
domain\:y=(\frac{1}{3})^{x}
|
domain y=x+5
|
domain\:y=x+5
|
domain f(x)=\sqrt[3]{5/(5x^2+x-3)}
|
domain\:f(x)=\sqrt[3]{\frac{5}{5x^{2}+x-3}}
|
domain g(x)=-2(x/2+1)-3
|
domain\:g(x)=-2(\frac{x}{2}+1)-3
|
domain f(x)=(x-6)/(x^2-7x+6)
|
domain\:f(x)=\frac{x-6}{x^{2}-7x+6}
|
asymptotes f(x)=(2x^2-14x+20)/(x^2-4)
|
asymptotes\:f(x)=\frac{2x^{2}-14x+20}{x^{2}-4}
|
domain f(x)=((1+x-3x^2))/(xsqrt(x^2-4))
|
domain\:f(x)=\frac{(1+x-3x^{2})}{x\sqrt{x^{2}-4}}
|
domain f(x)=(sqrt(x-2))/(x+6)
|
domain\:f(x)=\frac{\sqrt{x-2}}{x+6}
|
domain |2x+1|
|
domain\:\left|2x+1\right|
|
domain f(x)=\sqrt[3]{x^2-4x+3}
|
domain\:f(x)=\sqrt[3]{x^{2}-4x+3}
|
domain (sqrt(x+2))/(x^2-4)
|
domain\:\frac{\sqrt{x+2}}{x^{2}-4}
|
domain-3x-12
|
domain\:-3x-12
|
domain-2x+6
|
domain\:-2x+6
|
domain 5+13t-4.9t^2
|
domain\:5+13t-4.9t^{2}
|
domain-6x
|
domain\:-6x
|
domain f(u)=-3sin(2u+3.1416)
|
domain\:f(u)=-3\sin(2u+3.1416)
|
domain f(x)=sqrt(x+3)+2
|
domain\:f(x)=\sqrt{x+3}+2
|
extreme points f(x)=6x^4+16x^3
|
extreme\:points\:f(x)=6x^{4}+16x^{3}
|
domain-2cot(4/3)(y-π/6)+3
|
domain\:-2\cot(\frac{4}{3})(y-\frac{π}{6})+3
|
domain f(x)=5x+15
|
domain\:f(x)=5x+15
|
domain (x^3-9x)/(3x^2-6x-9)
|
domain\:\frac{x^{3}-9x}{3x^{2}-6x-9}
|
domain f(x)=2x^5-7x^3+4x
|
domain\:f(x)=2x^{5}-7x^{3}+4x
|
domain sqrt(x^2-8x+12)
|
domain\:\sqrt{x^{2}-8x+12}
|
domain 6x^2-9
|
domain\:6x^{2}-9
|
domain f(x)=(x^2-9)/(x^2+x-6)
|
domain\:f(x)=\frac{x^{2}-9}{x^{2}+x-6}
|
domain f(x)=-2sqrt(x+5)-1
|
domain\:f(x)=-2\sqrt{x+5}-1
|
domain f(x)= 1/(\sqrt[3]{4-2x)}
|
domain\:f(x)=\frac{1}{\sqrt[3]{4-2x}}
|
domain f(x)=cos(x^2)
|
domain\:f(x)=\cos(x^{2})
|
inverse f(x)=e^{-x^2}
|
inverse\:f(x)=e^{-x^{2}}
|
domain f(x)= x/((x^2-9))
|
domain\:f(x)=\frac{x}{(x^{2}-9)}
|
domain y=x^4-4x^3
|
domain\:y=x^{4}-4x^{3}
|
domain f(x)=(x-6)/(x^2-25)
|
domain\:f(x)=\frac{x-6}{x^{2}-25}
|
domain (1728000000x-13824000000)/6
|
domain\:\frac{1728000000x-13824000000}{6}
|
domain 3y+xy=2x+1
|
domain\:3y+xy=2x+1
|
domain y=log_{10}(x+2)
|
domain\:y=\log_{10}(x+2)
|
domain f(x)=sqrt((x+3)/(7-x))
|
domain\:f(x)=\sqrt{\frac{x+3}{7-x}}
|
domain y=-x^2-2
|
domain\:y=-x^{2}-2
|
domain 1/3 x+2
|
domain\:\frac{1}{3}x+2
|
domain 1/3 x+4
|
domain\:\frac{1}{3}x+4
|
domain f(x)=sqrt(4x-12)
|
domain\:f(x)=\sqrt{4x-12}
|
domain f(x)=x^5-2x+6
|
domain\:f(x)=x^{5}-2x+6
|
domain (3x)/(x^2-9)
|
domain\:\frac{3x}{x^{2}-9}
|
domain f(x)=y=2x+1
|
domain\:f(x)=y=2x+1
|
domain f(x)=-x^2+2x-19
|
domain\:f(x)=-x^{2}+2x-19
|
domain-3cos(x)
|
domain\:-3\cos(x)
|
domain+5-2/x
|
domain\:+5-\frac{2}{x}
|
domain 2x^2-2
|
domain\:2x^{2}-2
|
domain 4/((1/x)-3)
|
domain\:\frac{4}{(\frac{1}{x})-3}
|
domain f(x)=3^{-x}-5
|
domain\:f(x)=3^{-x}-5
|
domain y=log_{10}(x-2)
|
domain\:y=\log_{10}(x-2)
|
intercepts f(x)=2x+6
|
intercepts\:f(x)=2x+6
|
domain 1^{x+3}
|
domain\:1^{x+3}
|
domain-2sec(x)
|
domain\:-2\sec(x)
|
domain 0.36x+0.6
|
domain\:0.36x+0.6
|
domain f(x)=\sqrt[10]{(5x+1)/((8x+1)(11x-9)(5x-9))}
|
domain\:f(x)=\sqrt[10]{\frac{5x+1}{(8x+1)(11x-9)(5x-9)}}
|
domain f(x)=sqrt((x+1)/(x+2))
|
domain\:f(x)=\sqrt{\frac{x+1}{x+2}}
|
domain y= 1/(sqrt(x-3))
|
domain\:y=\frac{1}{\sqrt{x-3}}
|
domain f(x)=x^{4/3}-x^{1/3}
|
domain\:f(x)=x^{\frac{4}{3}}-x^{\frac{1}{3}}
|
domain (x-1)/5
|
domain\:\frac{x-1}{5}
|
domain f(x)=-x^2+3x-1
|
domain\:f(x)=-x^{2}+3x-1
|
domain (2y-b)/y
|
domain\:\frac{2y-b}{y}
|
inverse y=x-6
|
inverse\:y=x-6
|
domain (7x-2)/(x+6)
|
domain\:\frac{7x-2}{x+6}
|
domain-x^2+x+2
|
domain\:-x^{2}+x+2
|
domain sqrt((x+3)/(x-4))
|
domain\:\sqrt{\frac{x+3}{x-4}}
|
domain (2x+1)/(2x-4)
|
domain\:\frac{2x+1}{2x-4}
|
domain f(x)=tan(x) π/2
|
domain\:f(x)=\tan(x)\frac{π}{2}
|
domain f(x)= 1/(x^2+2x-35)
|
domain\:f(x)=\frac{1}{x^{2}+2x-35}
|
domain sqrt(4x+4)
|
domain\:\sqrt{4x+4}
|
domain f(x)= 1/(3x^2+17x-6)
|
domain\:f(x)=\frac{1}{3x^{2}+17x-6}
|
domain f(x)=6(2)^{x-3}+7
|
domain\:f(x)=6(2)^{x-3}+7
|
domain f(x)= 1/(sqrt(18-3x-x^2))
|
domain\:f(x)=\frac{1}{\sqrt{18-3x-x^{2}}}
|
distance (0,0)(-2,3)
|
distance\:(0,0)(-2,3)
|
domain f(x)=(sqrt(x^2-4))/x
|
domain\:f(x)=\frac{\sqrt{x^{2}-4}}{x}
|
domain f(x)=-log_{9}(x+5)
|
domain\:f(x)=-\log_{9}(x+5)
|
domain 2\sqrt[3]{x+5}
|
domain\:2\sqrt[3]{x+5}
|
domain f(x)=5x^3+7x^2-10x+2
|
domain\:f(x)=5x^{3}+7x^{2}-10x+2
|
domain (1/2)^x-4
|
domain\:(\frac{1}{2})^{x}-4
|
domain f(x)=(x-2)/(x-2)
|
domain\:f(x)=\frac{x-2}{x-2}
|
domain sqrt(2-x)+6
|
domain\:\sqrt{2-x}+6
|
domain g(x)=g(x)={-x^2+4x,x<3}
|
domain\:g(x)=g(x)=\left\{-x^{2}+4x,x<3\right\}
|
domain f(x)=(4(x+2)(x+1))/(2(x-1)(x+1))
|
domain\:f(x)=\frac{4(x+2)(x+1)}{2(x-1)(x+1)}
|
domain f(x)=(3x-7)/(9x+6)
|
domain\:f(x)=\frac{3x-7}{9x+6}
|
asymptotes f(x)=(4+x^4)/(x^2-x^4)
|
asymptotes\:f(x)=\frac{4+x^{4}}{x^{2}-x^{4}}
|
domain f(x)=(5x-2)/(2x+1)
|
domain\:f(x)=\frac{5x-2}{2x+1}
|
domain f(x)=(sqrt(x^2-8))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x^{2}-8}}{x-4}
|
domain f(x)=arcsin((|2x-4|-1)/(3x-5))arctan(sqrt(x^2-1))
|
domain\:f(x)=\arcsin(\frac{\left|2x-4\right|-1}{3x-5})\arctan(\sqrt{x^{2}-1})
|
domain (2x-1)/x
|
domain\:\frac{2x-1}{x}
|
domain f(x)=\sqrt[10]{x^2+3x+2}
|
domain\:f(x)=\sqrt[10]{x^{2}+3x+2}
|
domain f(x)= 2/3 x+1
|
domain\:f(x)=\frac{2}{3}x+1
|
domain f(x)=3x+11
|
domain\:f(x)=3x+11
|
domain sqrt(x^2-2x)
|
domain\:\sqrt{x^{2}-2x}
|
domain g(x)=sqrt(2x+9)
|
domain\:g(x)=\sqrt{2x+9}
|
domain f(x)=(x-2)^2-1,x>= 0
|
domain\:f(x)=(x-2)^{2}-1,x\ge\:0
|
inverse f(x)=3x^2-6x+1
|
inverse\:f(x)=3x^{2}-6x+1
|
domain f(x)=2x^3+9x^2-5x
|
domain\:f(x)=2x^{3}+9x^{2}-5x
|
domain h(x)=(9x)/(x(x^2-36))
|
domain\:h(x)=\frac{9x}{x(x^{2}-36)}
|
domain f(x)=(x-5)/(5x+5)
|
domain\:f(x)=\frac{x-5}{5x+5}
|
domain g(x)=g(x)={x+2,x>= 3}
|
domain\:g(x)=g(x)=\left\{x+2,x\ge\:3\right\}
|
domain f(x)=ln(1/((x^2-3x-28)))
|
domain\:f(x)=\ln(\frac{1}{(x^{2}-3x-28)})
|