domain f(x)=2ln(x^2+2)-1
|
domain\:f(x)=2\ln(x^{2}+2)-1
|
domain 2^{x-3}+2
|
domain\:2^{x-3}+2
|
domain x=(log_{10}(y)-11.8)/(1.5)
|
domain\:x=\frac{\log_{10}(y)-11.8}{1.5}
|
domain sqrt(1/(x^2+9))
|
domain\:\sqrt{\frac{1}{x^{2}+9}}
|
domain (log_{10}(x))/(1-log_{10)(x)}
|
domain\:\frac{\log_{10}(x)}{1-\log_{10}(x)}
|
domain (x+8)^2
|
domain\:(x+8)^{2}
|
inverse f(x)=(x^3)/8-3
|
inverse\:f(x)=\frac{x^{3}}{8}-3
|
domain f(x)=(sqrt(x+5))/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{x+5}}{x^{2}-4}
|
domain-1/3 x+2
|
domain\:-\frac{1}{3}x+2
|
domain f(x)=x^2-x+3
|
domain\:f(x)=x^{2}-x+3
|
domain 1/4 x-2
|
domain\:\frac{1}{4}x-2
|
domain ((x-2))/(x+1)
|
domain\:\frac{(x-2)}{x+1}
|
domain f(x)=-5x-4sqrt(2)x^2-4
|
domain\:f(x)=-5x-4\sqrt{2}x^{2}-4
|
domain f(x)=(1-x)/(x+2)
|
domain\:f(x)=\frac{1-x}{x+2}
|
domain (x^2-3x-4)/(x+2)
|
domain\:\frac{x^{2}-3x-4}{x+2}
|
domain sqrt(-x^2+9)
|
domain\:\sqrt{-x^{2}+9}
|
domain-10(x+9)^4(x-4)^4
|
domain\:-10(x+9)^{4}(x-4)^{4}
|
domain f(x)=(x-3)/(x^2-1)
|
domain\:f(x)=\frac{x-3}{x^{2}-1}
|
domain f(x)=(9x)/(2x-1)
|
domain\:f(x)=\frac{9x}{2x-1}
|
domain f(x)=sqrt((x^2-9)+5)
|
domain\:f(x)=\sqrt{(x^{2}-9)+5}
|
domain ln(sqrt(5x-2))
|
domain\:\ln(\sqrt{5x-2})
|
domain f(x)= x/(10x+81)
|
domain\:f(x)=\frac{x}{10x+81}
|
domain 3x^2-2x+1
|
domain\:3x^{2}-2x+1
|
domain f(x)=(-2x)/((x+7)(6-x))
|
domain\:f(x)=\frac{-2x}{(x+7)(6-x)}
|
domain f(x)=x+(1/x)
|
domain\:f(x)=x+(\frac{1}{x})
|
domain 1/(sqrt(4-9x))
|
domain\:\frac{1}{\sqrt{4-9x}}
|
domain f(x)=(15-x)/(x^2+2x-15)
|
domain\:f(x)=\frac{15-x}{x^{2}+2x-15}
|
domain g(x)=4^x+1
|
domain\:g(x)=4^{x}+1
|
extreme points (x^2-9)^6
|
extreme\:points\:(x^{2}-9)^{6}
|
domain log_{3}((y+1)^2)=2
|
domain\:\log_{3}((y+1)^{2})=2
|
domain f(x)=-x^3+1
|
domain\:f(x)=-x^{3}+1
|
domain f(x)=\sqrt[3]{x(x+3)^2}
|
domain\:f(x)=\sqrt[3]{x(x+3)^{2}}
|
domain f(x)=4x-15
|
domain\:f(x)=4x-15
|
domain f(x)=sqrt(16+b^2)
|
domain\:f(x)=\sqrt{16+b^{2}}
|
domain f(x)=(x^2-3)/(x^3-27)+sqrt((|x-2|-4)/(x^2+x+1))
|
domain\:f(x)=\frac{x^{2}-3}{x^{3}-27}+\sqrt{\frac{\left|x-2\right|-4}{x^{2}+x+1}}
|
domain x^2-3x-10
|
domain\:x^{2}-3x-10
|
domain sqrt(x+4)+sqrt(6-x)
|
domain\:\sqrt{x+4}+\sqrt{6-x}
|
domain-x^3
|
domain\:-x^{3}
|
domain 3cot(x)
|
domain\:3\cot(x)
|
line (5,-1)(-5,-3)
|
line\:(5,-1)(-5,-3)
|
domain f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x))
|
domain\:f(x)=\sqrt{\frac{x-2}{x+2}}+\sqrt{\frac{1-x}{1+x}}
|
domain (sqrt(x+4))/(x-1)
|
domain\:\frac{\sqrt{x+4}}{x-1}
|
domain 2-e^{x-3}
|
domain\:2-e^{x-3}
|
domain y=log_{10}(x-2)+4
|
domain\:y=\log_{10}(x-2)+4
|
domain (-2x+5)/3
|
domain\:\frac{-2x+5}{3}
|
domain f(x)= 1/x+3/(5x)
|
domain\:f(x)=\frac{1}{x}+\frac{3}{5x}
|
domain f(x)=(x+2)/(x+9)
|
domain\:f(x)=\frac{x+2}{x+9}
|
domain f(x)=(3x-2)/x
|
domain\:f(x)=\frac{3x-2}{x}
|
domain f(x)=sqrt(x+1)-1
|
domain\:f(x)=\sqrt{x+1}-1
|
domain y=arccos(1/(x-3))
|
domain\:y=\arccos(\frac{1}{x-3})
|
domain f(x)= 1/(2+e^{2x)}
|
domain\:f(x)=\frac{1}{2+e^{2x}}
|
inverse f(x)=sqrt(-x^2+20x-25)+10
|
inverse\:f(x)=\sqrt{-x^{2}+20x-25}+10
|
domain f(x)= 2/(1-cos(x))
|
domain\:f(x)=\frac{2}{1-\cos(x)}
|
domain f(x)=((5ln(x)))/(x^3)
|
domain\:f(x)=\frac{(5\ln(x))}{x^{3}}
|
domain (x^2-2)/(x^2-4)
|
domain\:\frac{x^{2}-2}{x^{2}-4}
|
domain ln(e^x-8)+5
|
domain\:\ln(e^{x}-8)+5
|
domain f(x)=(5t+1)/(sqrt(t^3-t^2-8t))
|
domain\:f(x)=\frac{5t+1}{\sqrt{t^{3}-t^{2}-8t}}
|
domain f(x)=(x+2)/(x-6)
|
domain\:f(x)=\frac{x+2}{x-6}
|
domain f(x)=log_{10}(x+2)-1
|
domain\:f(x)=\log_{10}(x+2)-1
|
domain log_{3}(x-6)
|
domain\:\log_{3}(x-6)
|
domain-4-x^2
|
domain\:-4-x^{2}
|
domain f(x)=log_{2}(x^2-1)
|
domain\:f(x)=\log_{2}(x^{2}-1)
|
domain g(t)= 7/(sqrt(t))
|
domain\:g(t)=\frac{7}{\sqrt{t}}
|
domain 5/(x-1)
|
domain\:\frac{5}{x-1}
|
domain log_{10}(9-x^2)
|
domain\:\log_{10}(9-x^{2})
|
domain 2(x+1)+3
|
domain\:2(x+1)+3
|
domain f(x)=-2x^2-1
|
domain\:f(x)=-2x^{2}-1
|
domain f(x)=(9x)/(1+x^2)
|
domain\:f(x)=\frac{9x}{1+x^{2}}
|
domain f(x)=-2x^2+8
|
domain\:f(x)=-2x^{2}+8
|
domain sqrt(3x+7)
|
domain\:\sqrt{3x+7}
|
domain 1/(sqrt(x+2)-2)
|
domain\:\frac{1}{\sqrt{x+2}-2}
|
domain f(x)=((x-2))/(x+3)
|
domain\:f(x)=\frac{(x-2)}{x+3}
|
domain 2log_{10}(x-2)
|
domain\:2\log_{10}(x-2)
|
midpoint (-4,-8)(8,10)
|
midpoint\:(-4,-8)(8,10)
|
domain x^3y^3=1
|
domain\:x^{3}y^{3}=1
|
domain-6x-3
|
domain\:-6x-3
|
domain y= 1/2 tan(2x)
|
domain\:y=\frac{1}{2}\tan(2x)
|
domain f(x)= 1/9 x^2
|
domain\:f(x)=\frac{1}{9}x^{2}
|
domain (2x+1)/(3x-4)
|
domain\:\frac{2x+1}{3x-4}
|
domain y= 3/2 x^2-3x+4
|
domain\:y=\frac{3}{2}x^{2}-3x+4
|
domain f(x)=((e^x))/(ln(\sqrt[4]{x-10))}
|
domain\:f(x)=\frac{(e^{x})}{\ln(\sqrt[4]{x-10})}
|
domain y=2x^2+1
|
domain\:y=2x^{2}+1
|
domain 1/2 x-5
|
domain\:\frac{1}{2}x-5
|
domain (\frac{x-2)/(x^2+x-6)}{(x^2+5x+4)/(x+4)}
|
domain\:\frac{\frac{x-2}{x^{2}+x-6}}{\frac{x^{2}+5x+4}{x+4}}
|
extreme points f(x)=16x-8x^2
|
extreme\:points\:f(x)=16x-8x^{2}
|
domain 1/2 x+1
|
domain\:\frac{1}{2}x+1
|
domain f(x)=x^2-4,x>= 0
|
domain\:f(x)=x^{2}-4,x\ge\:0
|
domain f(x)=-x-2
|
domain\:f(x)=-x-2
|
domain f(x)=(-1)/x
|
domain\:f(x)=\frac{-1}{x}
|
domain (\frac{x^2+10x+25)/(x-5)}{(x^2-25)/(5x+10)}
|
domain\:\frac{\frac{x^{2}+10x+25}{x-5}}{\frac{x^{2}-25}{5x+10}}
|
domain R
|
domain\:R
|
domain 15x+2
|
domain\:15x+2
|
domain (2x^2)/(x^2-4x)
|
domain\:\frac{2x^{2}}{x^{2}-4x}
|
domain (x-4)^2+3
|
domain\:(x-4)^{2}+3
|
domain f(x)=(6+x)/(3x)=(4x-8)/(5x)
|
domain\:f(x)=\frac{6+x}{3x}=\frac{4x-8}{5x}
|
domain 2|x|
|
domain\:2|x|
|
domain f(x)=y=6x+8
|
domain\:f(x)=y=6x+8
|
domain f(x)= 2/(3sqrt(x^2+9))
|
domain\:f(x)=\frac{2}{3\sqrt{x^{2}+9}}
|
domain f(x)=e^2
|
domain\:f(x)=e^{2}
|
domain z
|
domain\:z
|