domain of (3+x)/x
|
domain\:\frac{3+x}{x}
|
f(x)=5x
|
f(x)=5x
|
inverse of F(x)=(x-1)/(3+2x)
|
inverse\:F(x)=\frac{x-1}{3+2x}
|
f(x)= x/(x^2-1)
|
f(x)=\frac{x}{x^{2}-1}
|
range of f(x)=(x+2)^2-5
|
range\:f(x)=(x+2)^{2}-5
|
y=-x-4
|
y=-x-4
|
asymptotes of f(x)=(x^2+x-20)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}+x-20}{x-6}
|
intercepts of y=3*x^2
|
intercepts\:y=3\cdot\:x^{2}
|
range of x^2-4x+1
|
range\:x^{2}-4x+1
|
domain of f(x)= 1/(1+cos(x))
|
domain\:f(x)=\frac{1}{1+\cos(x)}
|
domain of f(x)= 2/(x+7)
|
domain\:f(x)=\frac{2}{x+7}
|
perpendicular-3/4
|
perpendicular\:-\frac{3}{4}
|
inflection points of 6/11 (x^2-9)^{2/3}
|
inflection\:points\:\frac{6}{11}(x^{2}-9)^{\frac{2}{3}}
|
domain of f(x)= 5/(x^2-9)
|
domain\:f(x)=\frac{5}{x^{2}-9}
|
x^2-3x+4
|
x^{2}-3x+4
|
inverse of f(x)= 1/2 x^2-2
|
inverse\:f(x)=\frac{1}{2}x^{2}-2
|
line (-7,0),(0,-8)
|
line\:(-7,0),(0,-8)
|
inverse of f(x)=\sqrt[3]{x/6}-7
|
inverse\:f(x)=\sqrt[3]{\frac{x}{6}}-7
|
asymptotes of f(x)=y=2+log_{3}(x)
|
asymptotes\:f(x)=y=2+\log_{3}(x)
|
inverse of f(x)=x^2-3x-1
|
inverse\:f(x)=x^{2}-3x-1
|
domain of f(x)=(x-3)^2+1
|
domain\:f(x)=(x-3)^{2}+1
|
extreme points of f(x)=x^3-6x^2+9
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9
|
range of-1/3 cos(3x)
|
range\:-\frac{1}{3}\cos(3x)
|
asymptotes of f(x)= x/(3-x)
|
asymptotes\:f(x)=\frac{x}{3-x}
|
domain of f(x)=(38)/(sqrt(41-x))
|
domain\:f(x)=\frac{38}{\sqrt{41-x}}
|
domain of f(x)=3-2x
|
domain\:f(x)=3-2x
|
inverse of ((4x-1)/(2x+3))
|
inverse\:(\frac{4x-1}{2x+3})
|
domain of f(x)=sqrt(10-2x)
|
domain\:f(x)=\sqrt{10-2x}
|
asymptotes of f(x)=(11x)/(x+1)
|
asymptotes\:f(x)=\frac{11x}{x+1}
|
range of-log_{3}(x-2)
|
range\:-\log_{3}(x-2)
|
intercepts of sqrt(3x+4)
|
intercepts\:\sqrt{3x+4}
|
domain of y= 1/(4+e^x)
|
domain\:y=\frac{1}{4+e^{x}}
|
domain of 1/(ln(-x^2+4x-3))
|
domain\:\frac{1}{\ln(-x^{2}+4x-3)}
|
inflection points of (x-2)^3(x-1)
|
inflection\:points\:(x-2)^{3}(x-1)
|
asymptotes of f(x)=(3x)/(sqrt(1+9x^2))
|
asymptotes\:f(x)=\frac{3x}{\sqrt{1+9x^{2}}}
|
asymptotes of (x^2+3x)/(x+3)
|
asymptotes\:\frac{x^{2}+3x}{x+3}
|
domain of ln(4-x^2)
|
domain\:\ln(4-x^{2})
|
slope intercept of (7,-4) 2/3
|
slope\:intercept\:(7,-4)\frac{2}{3}
|
inflection points of-x^4+2x^3
|
inflection\:points\:-x^{4}+2x^{3}
|
domain of f(x)=cos(x)
|
domain\:f(x)=\cos(x)
|
domain of f(x)=-2x^2+7
|
domain\:f(x)=-2x^{2}+7
|
parity cos(ec)
|
parity\:\cos(ec)
|
symmetry (x^2)/4+(y^2)/9 =1
|
symmetry\:\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
|
midpoint (2,5)(0,7)
|
midpoint\:(2,5)(0,7)
|
inverse of f(x)=(7x-4)/8
|
inverse\:f(x)=\frac{7x-4}{8}
|
slope intercept of 2x+y=5
|
slope\:intercept\:2x+y=5
|
extreme points of x^3+3x^2+3x+2
|
extreme\:points\:x^{3}+3x^{2}+3x+2
|
domain of 3x^2-9
|
domain\:3x^{2}-9
|
domain of f(x)=-9/((2+x)^2)
|
domain\:f(x)=-\frac{9}{(2+x)^{2}}
|
range of f(x)=(sqrt(x-5x))/(x-11)
|
range\:f(x)=\frac{\sqrt{x-5x}}{x-11}
|
domain of f(x)= 1/2 x-2
|
domain\:f(x)=\frac{1}{2}x-2
|
inverse of f(x)=(x-2)/(3x+5)
|
inverse\:f(x)=\frac{x-2}{3x+5}
|
inverse of f(x)=-sqrt(2)
|
inverse\:f(x)=-\sqrt{2}
|
line 2x-y=1
|
line\:2x-y=1
|
asymptotes of f(x)=(16)/x
|
asymptotes\:f(x)=\frac{16}{x}
|
perpendicular 5x-6y=4,\at (3,5)
|
perpendicular\:5x-6y=4,\at\:(3,5)
|
asymptotes of f(x)=(8-x)/(8-x(8+x))
|
asymptotes\:f(x)=\frac{8-x}{8-x(8+x)}
|
asymptotes of f(x)=(x-5)/(x+5)
|
asymptotes\:f(x)=\frac{x-5}{x+5}
|
range of (x-2)/(1-3x)
|
range\:\frac{x-2}{1-3x}
|
midpoint (-1,-5)(-3,3)
|
midpoint\:(-1,-5)(-3,3)
|
asymptotes of 5^x
|
asymptotes\:5^{x}
|
domain of f(x)=sqrt(8(2x^2-1)-2)
|
domain\:f(x)=\sqrt{8(2x^{2}-1)-2}
|
asymptotes of f(x)=(2x^2-50)/(x^2+5x)
|
asymptotes\:f(x)=\frac{2x^{2}-50}{x^{2}+5x}
|
critical points of f(x)=x^{5/2}-7x^2
|
critical\:points\:f(x)=x^{\frac{5}{2}}-7x^{2}
|
inverse of f(x)=(3x)/(x-1)
|
inverse\:f(x)=\frac{3x}{x-1}
|
periodicity of y= 8/9 cos((pi x)/4)
|
periodicity\:y=\frac{8}{9}\cos(\frac{\pi\:x}{4})
|
domain of (2x)/(x-9)
|
domain\:\frac{2x}{x-9}
|
line (1,)(2,)
|
line\:(1,)(2,)
|
domain of y=sqrt(x)+2
|
domain\:y=\sqrt{x}+2
|
domain of f(x)=ax^2+5
|
domain\:f(x)=ax^{2}+5
|
inverse of y=x^3-1
|
inverse\:y=x^{3}-1
|
inverse of f(x)=9x+9
|
inverse\:f(x)=9x+9
|
domain of 2x^2-16x+30
|
domain\:2x^{2}-16x+30
|
inverse of f(x)=x^2+8x+10
|
inverse\:f(x)=x^{2}+8x+10
|
range of-2x^2-16x-30
|
range\:-2x^{2}-16x-30
|
domain of \sqrt[3]{x+5}
|
domain\:\sqrt[3]{x+5}
|
domain of f(x)=x^4-10x^3+20x^2+25x
|
domain\:f(x)=x^{4}-10x^{3}+20x^{2}+25x
|
distance (1,2)(3,4)
|
distance\:(1,2)(3,4)
|
asymptotes of f(x)=(4-4x)/(6x+3)
|
asymptotes\:f(x)=\frac{4-4x}{6x+3}
|
inverse of f(x)=3ln(x+2)+1
|
inverse\:f(x)=3\ln(x+2)+1
|
extreme points of f(x)=2sqrt(x)-2x,x> 0
|
extreme\:points\:f(x)=2\sqrt{x}-2x,x\gt\:0
|
asymptotes of f(x)=3tan(2x-8pi)+3
|
asymptotes\:f(x)=3\tan(2x-8\pi)+3
|
asymptotes of f(x)=(x^2+4)/(2x-3)
|
asymptotes\:f(x)=\frac{x^{2}+4}{2x-3}
|
line r=
|
line\:r=
|
global extreme points of 6x^3
|
global\:extreme\:points\:6x^{3}
|
slope intercept of 3x+4y=24
|
slope\:intercept\:3x+4y=24
|
domain of (x+1)/(x-3)
|
domain\:\frac{x+1}{x-3}
|
midpoint (1,5)(-2,2)
|
midpoint\:(1,5)(-2,2)
|
domain of f(x)=3x^3+4x
|
domain\:f(x)=3x^{3}+4x
|
slope intercept of y-1=110(x+10)
|
slope\:intercept\:y-1=110(x+10)
|
asymptotes of-4/(x^3-9x)
|
asymptotes\:-\frac{4}{x^{3}-9x}
|
midpoint (-7,5)(0,4)
|
midpoint\:(-7,5)(0,4)
|
domain of 1-(sqrt(x))/3
|
domain\:1-\frac{\sqrt{x}}{3}
|
midpoint (-6,5)(8,-3)
|
midpoint\:(-6,5)(8,-3)
|
domain of-1/(2sqrt(3-x))
|
domain\:-\frac{1}{2\sqrt{3-x}}
|
inverse of y= 1/3 X-1/2
|
inverse\:y=\frac{1}{3}X-\frac{1}{2}
|
domain of (4x+1)/7
|
domain\:\frac{4x+1}{7}
|
line (2,-1),(7,3)
|
line\:(2,-1),(7,3)
|
inverse of f(x)=(-x-13)/(11)
|
inverse\:f(x)=\frac{-x-13}{11}
|
domain of (x^2+16)/(x(3x-6))
|
domain\:\frac{x^{2}+16}{x(3x-6)}
|