shift sin(3x)
|
shift\:\sin(3x)
|
inverse of f(x)=(-x-5)/3
|
inverse\:f(x)=\frac{-x-5}{3}
|
domain of f(x)=sqrt(x/(x^2-9))
|
domain\:f(x)=\sqrt{\frac{x}{x^{2}-9}}
|
inverse of f(x)= 2/x+1
|
inverse\:f(x)=\frac{2}{x}+1
|
intercepts of x^2-x-2
|
intercepts\:x^{2}-x-2
|
slope intercept of 10x-y=-7
|
slope\:intercept\:10x-y=-7
|
distance (-1,6)(2,8)
|
distance\:(-1,6)(2,8)
|
inverse of f(x)=3(x)^2
|
inverse\:f(x)=3(x)^{2}
|
critical points of f(x)=x^7-7x^5
|
critical\:points\:f(x)=x^{7}-7x^{5}
|
line (3,6),(5,5)
|
line\:(3,6),(5,5)
|
inverse of f(x)=1+sqrt(5+6x)
|
inverse\:f(x)=1+\sqrt{5+6x}
|
range of f(x)=sqrt(9-x)
|
range\:f(x)=\sqrt{9-x}
|
domain of f(x)=sqrt(|x^2-1|)
|
domain\:f(x)=\sqrt{|x^{2}-1|}
|
inverse of f(x)= 1/(11.25x)-1/90
|
inverse\:f(x)=\frac{1}{11.25x}-\frac{1}{90}
|
domain of g(x)=2x+4
|
domain\:g(x)=2x+4
|
asymptotes of f(x)=(x+4)/(x-1)
|
asymptotes\:f(x)=\frac{x+4}{x-1}
|
domain of f(x)=(x/(x+1))/(x/(x+1)+1)
|
domain\:f(x)=\frac{\frac{x}{x+1}}{\frac{x}{x+1}+1}
|
midpoint (5,2)(5,8)
|
midpoint\:(5,2)(5,8)
|
domain of f(x)=(x+3)/(2x^2-1)
|
domain\:f(x)=\frac{x+3}{2x^{2}-1}
|
domain of ln(x-8)
|
domain\:\ln(x-8)
|
parity f(x)=2x^3+x
|
parity\:f(x)=2x^{3}+x
|
domain of e^{sqrt(x+1)}
|
domain\:e^{\sqrt{x+1}}
|
domain of f(x)=x^4-12x^3+30x^2+36x
|
domain\:f(x)=x^{4}-12x^{3}+30x^{2}+36x
|
domain of \sqrt[3]{t-1}
|
domain\:\sqrt[3]{t-1}
|
range of sqrt(16-3x)
|
range\:\sqrt{16-3x}
|
domain of f(x)=(x+1)/(sqrt(2x-8))
|
domain\:f(x)=\frac{x+1}{\sqrt{2x-8}}
|
critical points of x^3-x^2-x+2
|
critical\:points\:x^{3}-x^{2}-x+2
|
domain of f(x)=(x^3)/(x^2+3x-10)
|
domain\:f(x)=\frac{x^{3}}{x^{2}+3x-10}
|
domain of f(x)=-2x-3
|
domain\:f(x)=-2x-3
|
f(x)=((12x-3))/((9x^2-4))
|
f(x)=\frac{(12x-3)}{(9x^{2}-4)}
|
distance (5,8)(-3,4)
|
distance\:(5,8)(-3,4)
|
domain of f(y)=x+4y=-10
|
domain\:f(y)=x+4y=-10
|
midpoint (5,-6)(-7,-2)
|
midpoint\:(5,-6)(-7,-2)
|
domain of f(x)=((x^4))/(x^2+x-12)
|
domain\:f(x)=\frac{(x^{4})}{x^{2}+x-12}
|
shift f(x)=5sin(2/3 x+2/9 pi)
|
shift\:f(x)=5\sin(\frac{2}{3}x+\frac{2}{9}\pi)
|
asymptotes of f(x)=(x^2+x-6)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x-3}
|
extreme points of f(x)=x^4e^x-4
|
extreme\:points\:f(x)=x^{4}e^{x}-4
|
range of sqrt(25-x^2)
|
range\:\sqrt{25-x^{2}}
|
domain of (ln(x-3))/(ln(e^x-e^3))
|
domain\:\frac{\ln(x-3)}{\ln(e^{x}-e^{3})}
|
intercepts of cos(6x)
|
intercepts\:\cos(6x)
|
inflection points of g(x)= x/(x+7)
|
inflection\:points\:g(x)=\frac{x}{x+7}
|
perpendicular y=x+2/5 ,\at (3,9)
|
perpendicular\:y=x+\frac{2}{5},\at\:(3,9)
|
asymptotes of (1+x^4)/(x^2-x^4)
|
asymptotes\:\frac{1+x^{4}}{x^{2}-x^{4}}
|
inverse of f(x)=(20)/x-3
|
inverse\:f(x)=\frac{20}{x}-3
|
inverse of f(x)=(4x)/(5-x)
|
inverse\:f(x)=\frac{4x}{5-x}
|
parity (4x)/(x^2+4)
|
parity\:\frac{4x}{x^{2}+4}
|
asymptotes of f(x)=(x^2+x-30)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}+x-30}{x-6}
|
inverse of f(x)=\sqrt[3]{x-1}-2
|
inverse\:f(x)=\sqrt[3]{x-1}-2
|
domain of sqrt(x^2+8x+14)
|
domain\:\sqrt{x^{2}+8x+14}
|
domain of f(x)=(y-10)/(y^2+3)
|
domain\:f(x)=\frac{y-10}{y^{2}+3}
|
slope intercept of 12x+3y=-18
|
slope\:intercept\:12x+3y=-18
|
domain of (x+2)/(x^3+8)
|
domain\:\frac{x+2}{x^{3}+8}
|
inverse of f(x)= 1/2 sqrt(x)-4
|
inverse\:f(x)=\frac{1}{2}\sqrt{x}-4
|
inverse of f(x)=(2x-4)/3
|
inverse\:f(x)=\frac{2x-4}{3}
|
asymptotes of (x^2-25)/(x-5)
|
asymptotes\:\frac{x^{2}-25}{x-5}
|
inverse of (-x-5)/3
|
inverse\:\frac{-x-5}{3}
|
extreme points of 1/9 x^4-4/9 x^3
|
extreme\:points\:\frac{1}{9}x^{4}-\frac{4}{9}x^{3}
|
inverse of (x^2-x)
|
inverse\:(x^{2}-x)
|
inverse of y=e^{3x}
|
inverse\:y=e^{3x}
|
inverse of x^2-9
|
inverse\:x^{2}-9
|
slope intercept of 2/3 x+8=y-3
|
slope\:intercept\:\frac{2}{3}x+8=y-3
|
range of f(x)= 6/(x^2+1)
|
range\:f(x)=\frac{6}{x^{2}+1}
|
domain of f(x)=-2x^2+1
|
domain\:f(x)=-2x^{2}+1
|
inverse of f(x)=(\sqrt[4]{x}+6)/7-10
|
inverse\:f(x)=\frac{\sqrt[4]{x}+6}{7}-10
|
extreme points of f(x)=x^{1/3}(x+8)
|
extreme\:points\:f(x)=x^{\frac{1}{3}}(x+8)
|
amplitude of y= 1/2 cos(x)
|
amplitude\:y=\frac{1}{2}\cos(x)
|
inverse of ((x+1))/((x-1))
|
inverse\:\frac{(x+1)}{(x-1)}
|
extreme points of f(x)=-x^3+5x^2+8x+3
|
extreme\:points\:f(x)=-x^{3}+5x^{2}+8x+3
|
midpoint (-3,1)(-8,8)
|
midpoint\:(-3,1)(-8,8)
|
distance (8,2)(14,3)
|
distance\:(8,2)(14,3)
|
domain of f(x)=-ln(x-3)+e
|
domain\:f(x)=-\ln(x-3)+e
|
domain of f(x)= 2/(x-4)
|
domain\:f(x)=\frac{2}{x-4}
|
slope intercept of-3x+y=1
|
slope\:intercept\:-3x+y=1
|
inverse of f(x)=3e^{2x}+1
|
inverse\:f(x)=3e^{2x}+1
|
asymptotes of f(x)=(x^2)/(x^2+3)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{2}+3}
|
perpendicular-3+4y=10
|
perpendicular\:-3+4y=10
|
line (1.5,9)(3.5,13)
|
line\:(1.5,9)(3.5,13)
|
slope of 6x-x2,\at (1,5)
|
slope\:6x-x2,\at\:(1,5)
|
asymptotes of f(x)= 4/((x-2)(x+2))
|
asymptotes\:f(x)=\frac{4}{(x-2)(x+2)}
|
domain of f(x)=2x^4-12
|
domain\:f(x)=2x^{4}-12
|
inverse of f(x)=(10)/(x+7)
|
inverse\:f(x)=\frac{10}{x+7}
|
inverse of f(x)=-2/3 x
|
inverse\:f(x)=-\frac{2}{3}x
|
inflection points of y=(x^3)/3-3x^2-7x
|
inflection\:points\:y=\frac{x^{3}}{3}-3x^{2}-7x
|
distance (-6,2),(4,1)
|
distance\:(-6,2),(4,1)
|
asymptotes of f(x)=(x^2+x-12)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}+x-12}{x^{2}-4}
|
inverse of f(x)=sqrt(2x)-4
|
inverse\:f(x)=\sqrt{2x}-4
|
range of f(x)=x^3-1
|
range\:f(x)=x^{3}-1
|
domain of sqrt(x)+4
|
domain\:\sqrt{x}+4
|
inverse of y=(3x+4)^2
|
inverse\:y=(3x+4)^{2}
|
range of f(x)=3x+1
|
range\:f(x)=3x+1
|
inverse of 7x^7
|
inverse\:7x^{7}
|
line (1,-7)(4,2)
|
line\:(1,-7)(4,2)
|
domain of f(x)=2x+5
|
domain\:f(x)=2x+5
|
domain of f(x)=(sqrt(x+1))/(sqrt(9-x^2))
|
domain\:f(x)=\frac{\sqrt{x+1}}{\sqrt{9-x^{2}}}
|
domain of f(x)=3sin(x)
|
domain\:f(x)=3\sin(x)
|
domain of-1/(x^4)-3
|
domain\:-\frac{1}{x^{4}}-3
|
domain of 4x-3
|
domain\:4x-3
|
periodicity of cos(ec)
|
periodicity\:\cos(ec)
|
intercepts of 3y=27
|
intercepts\:3y=27
|
asymptotes of (x^2+1)/x
|
asymptotes\:\frac{x^{2}+1}{x}
|