y=-5cos(pi/(16)x)-4
|
y=-5\cos(\frac{π}{16}x)-4
|
f(x)=(2x-6)/(-x+4)
|
f(x)=\frac{2x-6}{-x+4}
|
f(x)=(6x^4+3x^2+1)/(3x^4+2)
|
f(x)=\frac{6x^{4}+3x^{2}+1}{3x^{4}+2}
|
f(x)=sqrt(22-x)-sqrt(10-x)
|
f(x)=\sqrt{22-x}-\sqrt{10-x}
|
f(x)=xln(x/e)
|
f(x)=x\ln(\frac{x}{e})
|
f(x)=(1-x)/(1-\sqrt[3]{x)}
|
f(x)=\frac{1-x}{1-\sqrt[3]{x}}
|
f(x)=sqrt(x-5+3)
|
f(x)=\sqrt{x-5+3}
|
intercepts of (x^2-7x+10)/(x+2)
|
intercepts\:\frac{x^{2}-7x+10}{x+2}
|
f(x)=14sin(12x)sin(8x)
|
f(x)=14\sin(12x)\sin(8x)
|
f(x)=0.1x^2-20x+840
|
f(x)=0.1x^{2}-20x+840
|
y=4cos^2(x)-2
|
y=4\cos^{2}(x)-2
|
f(x)=((x+4)^2(x-2))/(2(x-1)^2(x-3))
|
f(x)=\frac{(x+4)^{2}(x-2)}{2(x-1)^{2}(x-3)}
|
f(x)=1-(x-3)^2
|
f(x)=1-(x-3)^{2}
|
f(x)=sqrt(3+x)+sqrt(3-x)
|
f(x)=\sqrt{3+x}+\sqrt{3-x}
|
f(x)=x^4-x^3-x-1
|
f(x)=x^{4}-x^{3}-x-1
|
y=((x+1)(x+2))/((x-1)(x-2))
|
y=\frac{(x+1)(x+2)}{(x-1)(x-2)}
|
f(x)=4x^3-6
|
f(x)=4x^{3}-6
|
y=25x^2-100
|
y=25x^{2}-100
|
inverse of f(x)=2cos(3x+2)
|
inverse\:f(x)=2\cos(3x+2)
|
range of 1/(x+2)
|
range\:\frac{1}{x+2}
|
y=5x-19
|
y=5x-19
|
f(t)=t^2e^{-t}sin(3t)
|
f(t)=t^{2}e^{-t}\sin(3t)
|
f(x)=x^4+25
|
f(x)=x^{4}+25
|
y= 5/(e^x)(3e^{2x}+(e^x)/7-e^{-4x})
|
y=\frac{5}{e^{x}}(3e^{2x}+\frac{e^{x}}{7}-e^{-4x})
|
f(x)=(1/3)^{-1}
|
f(x)=(\frac{1}{3})^{-1}
|
f(x)=x^3-9x^2+24x-15
|
f(x)=x^{3}-9x^{2}+24x-15
|
f(x)=(x-1)e^{-2x}
|
f(x)=(x-1)e^{-2x}
|
f(x)=2x^2+12x+5
|
f(x)=2x^{2}+12x+5
|
y=x^3(2x-1)^5
|
y=x^{3}(2x-1)^{5}
|
y=sqrt((1-x)/(2x-3))
|
y=\sqrt{\frac{1-x}{2x-3}}
|
periodicity of f(x)=3cos(1/3 x)
|
periodicity\:f(x)=3\cos(\frac{1}{3}x)
|
f(x)= 3/(5-x)
|
f(x)=\frac{3}{5-x}
|
f(x)= 2/3 x^3-6x^2+10
|
f(x)=\frac{2}{3}x^{3}-6x^{2}+10
|
f(x)=(|x^2+5x+6|)/(x+3)
|
f(x)=\frac{\left|x^{2}+5x+6\right|}{x+3}
|
f(x)=3x^2+8x-10
|
f(x)=3x^{2}+8x-10
|
f(x)=sin(2x)dx
|
f(x)=\sin(2x)dx
|
f(x)=2x^2-12x+36
|
f(x)=2x^{2}-12x+36
|
f(x)=5cos^4(x)
|
f(x)=5\cos^{4}(x)
|
f(x)= 1/2 (x-4)^2+1
|
f(x)=\frac{1}{2}(x-4)^{2}+1
|
f(x)=x^2-20x+900
|
f(x)=x^{2}-20x+900
|
critical points of x/(x+1)
|
critical\:points\:\frac{x}{x+1}
|
f(t)=-4.9t^2+9.8t+14.7
|
f(t)=-4.9t^{2}+9.8t+14.7
|
f(x)= x/(x+2\sqrt[3]{x)}
|
f(x)=\frac{x}{x+2\sqrt[3]{x}}
|
f(x)=-3x*log_{10}(x+8)
|
f(x)=-3x\cdot\:\log_{10}(x+8)
|
f(x)=sin(2x)*cos(3x)
|
f(x)=\sin(2x)\cdot\:\cos(3x)
|
y=3x^2-4x-1
|
y=3x^{2}-4x-1
|
r(x)=x(x+1)^2(x-1)(2-x)
|
r(x)=x(x+1)^{2}(x-1)(2-x)
|
f(x)=sin^2(3x+5)
|
f(x)=\sin^{2}(3x+5)
|
f(x)=sin(x)+cos(x),0<= x<= 2pi
|
f(x)=\sin(x)+\cos(x),0\le\:x\le\:2π
|
y=5x+21
|
y=5x+21
|
y=log_{e}(2x)
|
y=\log_{e}(2x)
|
inverse of f(x)=(1+3x)/(5-2x)
|
inverse\:f(x)=\frac{1+3x}{5-2x}
|
f(x)=(x-3)/2 ,0<= x<= 5
|
f(x)=\frac{x-3}{2},0\le\:x\le\:5
|
f(x)= 1/(3x^3-ln|x|+e^2)
|
f(x)=\frac{1}{3x^{3}-\ln\left|x\right|+e^{2}}
|
y=(x^2+x)/(x+1)
|
y=\frac{x^{2}+x}{x+1}
|
f(x)=3x^{5/3}-2x^{2/3}
|
f(x)=3x^{\frac{5}{3}}-2x^{\frac{2}{3}}
|
g(x)=(x+3)/(x+2)
|
g(x)=\frac{x+3}{x+2}
|
w(z)=3z^{-2}-1/z
|
w(z)=3z^{-2}-\frac{1}{z}
|
f(x)=3x^3+2x^2+3x+6
|
f(x)=3x^{3}+2x^{2}+3x+6
|
f(x)=x-x^{2/3}
|
f(x)=x-x^{\frac{2}{3}}
|
y=x^2-16x
|
y=x^{2}-16x
|
2x^2-5x-3
|
2x^{2}-5x-3
|
domain of f(x)= 2/(x^2-4)
|
domain\:f(x)=\frac{2}{x^{2}-4}
|
f(x)=(2-3x)(3x^2+2)^3
|
f(x)=(2-3x)(3x^{2}+2)^{3}
|
f(x)=|-x+4|-1
|
f(x)=\left|-x+4\right|-1
|
f(x)=xcos(x)+3x^2-4x+7
|
f(x)=x\cos(x)+3x^{2}-4x+7
|
f(t)=cos(5t)+sin(2t)
|
f(t)=\cos(5t)+\sin(2t)
|
y=-x^6-6x^5+50x^3+45x^2-108x-108
|
y=-x^{6}-6x^{5}+50x^{3}+45x^{2}-108x-108
|
y=(x^2+2)(x^3+1)
|
y=(x^{2}+2)(x^{3}+1)
|
f(x)=x^4-2x+1
|
f(x)=x^{4}-2x+1
|
f(x)= 1/2 x^2+2x-6
|
f(x)=\frac{1}{2}x^{2}+2x-6
|
u(t)=e^{-2t}+t^3
|
u(t)=e^{-2t}+t^{3}
|
domain of f(x)=-2|x-5|+2
|
domain\:f(x)=-2|x-5|+2
|
f(x)= 2/(xsqrt(x))
|
f(x)=\frac{2}{x\sqrt{x}}
|
f(x)=(2x^2-3)/5
|
f(x)=\frac{2x^{2}-3}{5}
|
f(x)=(3.2x-4.9)ln(3.2x+2.7)
|
f(x)=(3.2x-4.9)\ln(3.2x+2.7)
|
f(x)=sqrt(1-\sqrt{1-x)}
|
f(x)=\sqrt{1-\sqrt{1-x}}
|
y=sqrt(x^2-3x-4)
|
y=\sqrt{x^{2}-3x-4}
|
f(x)=2x^3-x^2-2x+4
|
f(x)=2x^{3}-x^{2}-2x+4
|
f(x)=sqrt(3x-27)
|
f(x)=\sqrt{3x-27}
|
y=-x^2+7x+18
|
y=-x^{2}+7x+18
|
f(x)=(3x)/(sqrt(16-x^2))-(4x)/(5-|3x-2|)
|
f(x)=\frac{3x}{\sqrt{16-x^{2}}}-\frac{4x}{5-\left|3x-2\right|}
|
f(x)=-2/5 x+6
|
f(x)=-\frac{2}{5}x+6
|
domain of f(x)=x^2-6x+5
|
domain\:f(x)=x^{2}-6x+5
|
f(x)=-4(x+2)(x-3)
|
f(x)=-4(x+2)(x-3)
|
y=3e^x+4/(\sqrt[3]{x)}
|
y=3e^{x}+\frac{4}{\sqrt[3]{x}}
|
f(x)=\sqrt[3]{x^2-8x+8}
|
f(x)=\sqrt[3]{x^{2}-8x+8}
|
f(x)=-x^2+12x+80
|
f(x)=-x^{2}+12x+80
|
f(x)= 3/4 x+2
|
f(x)=\frac{3}{4}x+2
|
f(x)= x/(x^2-4x+3)
|
f(x)=\frac{x}{x^{2}-4x+3}
|
f(x)=15x^2-12x+1
|
f(x)=15x^{2}-12x+1
|
f(x)=(x^2+1)/(x^2+2)
|
f(x)=\frac{x^{2}+1}{x^{2}+2}
|
y=4+5/(1+sqrt(x-3))
|
y=4+\frac{5}{1+\sqrt{x-3}}
|
f(x)=(x-2)/(x^2-3x-4)
|
f(x)=\frac{x-2}{x^{2}-3x-4}
|
intercepts of y=2x^3-12x^2+10x+10
|
intercepts\:y=2x^{3}-12x^{2}+10x+10
|
f(x)=200x-x^2-160
|
f(x)=200x-x^{2}-160
|
f(x)=-log_{4}(x-5)-3
|
f(x)=-\log_{4}(x-5)-3
|
r(θ)=tan(θ)
|
r(θ)=\tan(θ)
|
f(x)=(3x)^2
|
f(x)=(3x)^{2}
|
3y=4x,(3,4),(9,12)
|
3y=4x,(3,4),(9,12)
|