inverse of f(x)=2sqrt(x-4)
|
inverse\:f(x)=2\sqrt{x-4}
|
inverse of (x^2+1)/(x^2+5)
|
inverse\:\frac{x^{2}+1}{x^{2}+5}
|
inverse of f(x)=(((-2x-5)))/((-8x+5))
|
inverse\:f(x)=\frac{((-2x-5))}{(-8x+5)}
|
inverse of (6x-7)/(5x+9)
|
inverse\:\frac{6x-7}{5x+9}
|
inverse of-(cos((11pix)/6))/(2)-2
|
inverse\:-\frac{\cos(\frac{11πx}{6})}{2}-2
|
inverse of f(x)=(-3x-5)/(4x+5)
|
inverse\:f(x)=\frac{-3x-5}{4x+5}
|
inverse of f(x)=(5-x)/4
|
inverse\:f(x)=\frac{5-x}{4}
|
inverse of y=2(x-2)^3
|
inverse\:y=2(x-2)^{3}
|
domain of f(x)=(2-3x)/(x^2-3x)
|
domain\:f(x)=\frac{2-3x}{x^{2}-3x}
|
inverse of f(x)=-2(4x+8)^3
|
inverse\:f(x)=-2(4x+8)^{3}
|
inverse of y= 4/x+10
|
inverse\:y=\frac{4}{x}+10
|
inverse of f(x)=16\sqrt[3]{x}
|
inverse\:f(x)=16\sqrt[3]{x}
|
inverse of (x^2+1)/(x^2+2)
|
inverse\:\frac{x^{2}+1}{x^{2}+2}
|
inverse of f(x)=sqrt(1-2x)+4
|
inverse\:f(x)=\sqrt{1-2x}+4
|
inverse of \sqrt[3]{2x+5}
|
inverse\:\sqrt[3]{2x+5}
|
inverse of x/(8x-3)
|
inverse\:\frac{x}{8x-3}
|
inverse of f(x)=(3-2)/(x-5)
|
inverse\:f(x)=\frac{3-2}{x-5}
|
inverse of f(x)=((4x)/(x+8))
|
inverse\:f(x)=(\frac{4x}{x+8})
|
inverse of f(x)=((3))/((x^3+2))
|
inverse\:f(x)=\frac{(3)}{(x^{3}+2)}
|
domain of 4/x-6/(x+6)
|
domain\:\frac{4}{x}-\frac{6}{x+6}
|
inverse of (x+1)/(2(x-1))
|
inverse\:\frac{x+1}{2(x-1)}
|
inverse of f(x)=-11x-3
|
inverse\:f(x)=-11x-3
|
inverse of f(x)=-3n+2
|
inverse\:f(x)=-3n+2
|
inverse of 10x-5
|
inverse\:10x-5
|
inverse of f(x)=cos(arccos(2/3))
|
inverse\:f(x)=\cos(\arccos(\frac{2}{3}))
|
inverse of f(x)=3e^{x+4}-7
|
inverse\:f(x)=3e^{x+4}-7
|
inverse of sqrt(-)x,x<= 0
|
inverse\:\sqrt{-}x,x\le\:0
|
inverse of 5x-11
|
inverse\:5x-11
|
inverse of f(x)=x^2,1<= x<= 4
|
inverse\:f(x)=x^{2},1\le\:x\le\:4
|
inverse of f(x)=((4x+5))/((x+4))
|
inverse\:f(x)=\frac{(4x+5)}{(x+4)}
|
range of sqrt((x-1)/(x+3))
|
range\:\sqrt{\frac{x-1}{x+3}}
|
inverse of f(x)=8(x-3)+27
|
inverse\:f(x)=8(x-3)+27
|
inverse of 6x-6
|
inverse\:6x-6
|
inverse of y=x^2-2x+2
|
inverse\:y=x^{2}-2x+2
|
inverse of tan(5)
|
inverse\:\tan(5)
|
inverse of 2/(x+10)
|
inverse\:\frac{2}{x+10}
|
inverse of y=log_{10}(-1/2 x)
|
inverse\:y=\log_{10}(-\frac{1}{2}x)
|
inverse of f(x)=((2-x))/((*+1))
|
inverse\:f(x)=\frac{(2-x)}{(\cdot\:+1)}
|
inverse of f(x)=(x^2)/2+x+1/2
|
inverse\:f(x)=\frac{x^{2}}{2}+x+\frac{1}{2}
|
extreme points of f(x)=x^3-12x^2+36x+8
|
extreme\:points\:f(x)=x^{3}-12x^{2}+36x+8
|
inverse of f(x)= 1/9 x+5
|
inverse\:f(x)=\frac{1}{9}x+5
|
inverse of f(x)=((5x+8))/((6x-10))
|
inverse\:f(x)=\frac{(5x+8)}{(6x-10)}
|
inverse of f(x)=11+sqrt(4x-4)
|
inverse\:f(x)=11+\sqrt{4x-4}
|
inverse of 1/(1/2 (x-2))
|
inverse\:\frac{1}{\frac{1}{2}(x-2)}
|
inverse of f(x)=ln(7x+e)
|
inverse\:f(x)=\ln(7x+e)
|
inverse of f(x)=-(ln(x))/(ln(2))
|
inverse\:f(x)=-\frac{\ln(x)}{\ln(2)}
|
inverse of f(x)=ln(4-sqrt(x^2-9))
|
inverse\:f(x)=\ln(4-\sqrt{x^{2}-9})
|
inverse of x=-y^3-2
|
inverse\:x=-y^{3}-2
|
inverse of log_{3}(-2x-2)+1
|
inverse\:\log_{3}(-2x-2)+1
|
inverse of z 1/(1-z^{-1)}
|
inverse\:z\frac{1}{1-z^{-1}}
|
slope of y=x+9
|
slope\:y=x+9
|
inverse of f(x)=11-x/4 h(x)=-4(x-11)
|
inverse\:f(x)=11-\frac{x}{4}h(x)=-4(x-11)
|
inverse of f(x)=59ln(x)
|
inverse\:f(x)=59\ln(x)
|
inverse of f(x)=\sqrt[8]{x}
|
inverse\:f(x)=\sqrt[8]{x}
|
inverse of y=(x+5)^2
|
inverse\:y=(x+5)^{2}
|
inverse of (x+9)/(x^2-81)
|
inverse\:\frac{x+9}{x^{2}-81}
|
inverse of+4sin(x)+7
|
inverse\:+4\sin(x)+7
|
inverse of f(x)=1.8158e-19
|
inverse\:f(x)=1.8158e-19
|
inverse of f(x)=(x-10)^2,x<= 10
|
inverse\:f(x)=(x-10)^{2},x\le\:10
|
inverse of f(x)= x/(x-18)
|
inverse\:f(x)=\frac{x}{x-18}
|
inverse of (2-(1-3x))/(2x-5)
|
inverse\:\frac{2-(1-3x)}{2x-5}
|
periodicity of-2sin(-4x+(pi)/2)
|
periodicity\:-2\sin(-4x+\frac{\pi}{2})
|
inverse of f(x)= 1/(1000x+1)
|
inverse\:f(x)=\frac{1}{1000x+1}
|
inverse of f(x)=(7x)/(5-3x)
|
inverse\:f(x)=\frac{7x}{5-3x}
|
inverse of f(x)=cos(5x)
|
inverse\:f(x)=\cos(5x)
|
inverse of f(x)= t/(t^2-4)
|
inverse\:f(x)=\frac{t}{t^{2}-4}
|
inverse of-3e^{-y}
|
inverse\:-3e^{-y}
|
inverse of tan(x)(36/17)
|
inverse\:\tan(x)(\frac{36}{17})
|
inverse of sqrt((3x-9)/5)
|
inverse\:\sqrt{\frac{3x-9}{5}}
|
inverse of 1/5 e^{5y}+9/5
|
inverse\:\frac{1}{5}e^{5y}+\frac{9}{5}
|
inverse of f(x)= n/(3x-2)
|
inverse\:f(x)=\frac{n}{3x-2}
|
inverse of f(x)=16+3sqrt(x)
|
inverse\:f(x)=16+3\sqrt{x}
|
inverse of-(1/12)^{(x+2)}+1
|
inverse\:-(\frac{1}{12})^{(x+2)}+1
|
inverse of-6+sqrt(x-9)
|
inverse\:-6+\sqrt{x-9}
|
inverse of f(x)=(-x)/(x^2+1)
|
inverse\:f(x)=\frac{-x}{x^{2}+1}
|
inverse of f(x)=(x-5)/(6x+5)
|
inverse\:f(x)=\frac{x-5}{6x+5}
|
inverse of 3^{0.5x}
|
inverse\:3^{0.5x}
|
inverse of 2sqrt(x+5)+4
|
inverse\:2\sqrt{x+5}+4
|
inverse of log_{10}(x)-3
|
inverse\:\log_{10}(x)-3
|
inverse of ln(0.2)
|
inverse\:\ln(0.2)
|
inverse of 4\sqrt[3]{x+7}-9
|
inverse\:4\sqrt[3]{x+7}-9
|
inverse of 2/3 x-1/4
|
inverse\:\frac{2}{3}x-\frac{1}{4}
|
midpoint (12,7)(-2,11)
|
midpoint\:(12,7)(-2,11)
|
inverse of f(x)=y=sqrt(2-x)+7
|
inverse\:f(x)=y=\sqrt{2-x}+7
|
inverse of f(x)=x^2+3,0<= x<= infinity
|
inverse\:f(x)=x^{2}+3,0\le\:x\le\:\infty\:
|
inverse of ln(1-x^2)
|
inverse\:\ln(1-x^{2})
|
inverse of f(x)=((5x+3))/((2x-7))
|
inverse\:f(x)=\frac{(5x+3)}{(2x-7)}
|
inverse of s^7sqrt(5)+3sqrt(5)
|
inverse\:s^{7}\sqrt{5}+3\sqrt{5}
|
inverse of (3s)/((s-1)(s+3))
|
inverse\:\frac{3s}{(s-1)(s+3)}
|
inverse of f(x)=x+[x]
|
inverse\:f(x)=x+[x]
|
inverse of f(x)= 1/5 (5x-25)+5
|
inverse\:f(x)=\frac{1}{5}(5x-25)+5
|
inverse of f(x)=4x+5=17
|
inverse\:f(x)=4x+5=17
|
inverse of f(x)=x+e^1
|
inverse\:f(x)=x+e^{1}
|
distance (5,7)(3,0)
|
distance\:(5,7)(3,0)
|
inverse of cos(1.18)
|
inverse\:\cos(1.18)
|
inverse of (1-e^x)/(1+e^x)
|
inverse\:\frac{1-e^{x}}{1+e^{x}}
|
inverse of f(x)=sqrt(6x)-9
|
inverse\:f(x)=\sqrt{6x}-9
|
inverse of f(x)= 1/(1/x-\frac{1){3x+4}}
|
inverse\:f(x)=\frac{1}{\frac{1}{x}-\frac{1}{3x+4}}
|
inverse of sqrt(x-1)+7
|
inverse\:\sqrt{x-1}+7
|
inverse of log_{5}(sqrt(x-2))+1/2
|
inverse\:\log_{5}(\sqrt{x-2})+\frac{1}{2}
|