inverse of 2(x-1)^2-4
|
inverse\:2(x-1)^{2}-4
|
inverse of f(x)=(x+5)/(2-7x)
|
inverse\:f(x)=\frac{x+5}{2-7x}
|
extreme points of-2x^3+12x^2+2
|
extreme\:points\:-2x^{3}+12x^{2}+2
|
inverse of y=log_{10}(a) 1/x
|
inverse\:y=\log_{10}(a)\frac{1}{x}
|
inverse of f(x)=ln(4+ln(x))
|
inverse\:f(x)=\ln(4+\ln(x))
|
inverse of 2^{5x+1}-1
|
inverse\:2^{5x+1}-1
|
inverse of f(z)=(z^2-z)/(z+1)
|
inverse\:f(z)=\frac{z^{2}-z}{z+1}
|
inverse of f(x)=1-1/(0.15*223696201)
|
inverse\:f(x)=1-\frac{1}{0.15\cdot\:223696201}
|
inverse of f(x)=3(3)-5
|
inverse\:f(x)=3(3)-5
|
inverse of f(x)=log_{2}(x+1)-3
|
inverse\:f(x)=\log_{2}(x+1)-3
|
inverse of 3x^2-x+5
|
inverse\:3x^{2}-x+5
|
inverse of f(x)=log_{2}(x+1)-2
|
inverse\:f(x)=\log_{2}(x+1)-2
|
inverse of f(x)=sqrt(4(1-x^2))
|
inverse\:f(x)=\sqrt{4(1-x^{2})}
|
midpoint (-7,-9)(-0.5,-3)
|
midpoint\:(-7,-9)(-0.5,-3)
|
inverse of y=3*(2^{4x-5})
|
inverse\:y=3\cdot\:(2^{4x-5})
|
inverse of f(x)=2sqrt(0.5x+1)+2
|
inverse\:f(x)=2\sqrt{0.5x+1}+2
|
inverse of f(x)=11.3+\sqrt[3]{x-4}
|
inverse\:f(x)=11.3+\sqrt[3]{x-4}
|
inverse of sqrt(x+10)-sqrt(x)
|
inverse\:\sqrt{x+10}-\sqrt{x}
|
inverse of (3e^x+1)/(9e^x-1)
|
inverse\:\frac{3e^{x}+1}{9e^{x}-1}
|
inverse of f(x)=(50x+1000)/x
|
inverse\:f(x)=\frac{50x+1000}{x}
|
inverse of f(x)=(1-3^{2x})/(9^x-3)
|
inverse\:f(x)=\frac{1-3^{2x}}{9^{x}-3}
|
inverse of-2x^2+24x
|
inverse\:-2x^{2}+24x
|
inverse of 11.3+\sqrt[3]{x-6.1}
|
inverse\:11.3+\sqrt[3]{x-6.1}
|
inverse of f(x)=(5-2x)/(4x-1)
|
inverse\:f(x)=\frac{5-2x}{4x-1}
|
domain of f(x)=sqrt(x+2)-1/(x^2-1)
|
domain\:f(x)=\sqrt{x+2}-\frac{1}{x^{2}-1}
|
inverse of f(x)= 3/((8+x))
|
inverse\:f(x)=\frac{3}{(8+x)}
|
inverse of y=12-4x
|
inverse\:y=12-4x
|
inverse of f(x)=(sqrt(x^3-1))/4
|
inverse\:f(x)=\frac{\sqrt{x^{3}-1}}{4}
|
inverse of f(x)=(1+x)/(sqrt(2x-x^2))
|
inverse\:f(x)=\frac{1+x}{\sqrt{2x-x^{2}}}
|
inverse of f(x)=0.5055x+0.0469
|
inverse\:f(x)=0.5055x+0.0469
|
inverse of ((9t^2+16)^{3/2}-64)/9
|
inverse\:\frac{(9t^{2}+16)^{\frac{3}{2}}-64}{9}
|
inverse of f(x)= 8/(-4x+1)
|
inverse\:f(x)=\frac{8}{-4x+1}
|
inverse of y=(2x^2+3)/(5-x^2)
|
inverse\:y=\frac{2x^{2}+3}{5-x^{2}}
|
inverse of f(x)=4+23x-10
|
inverse\:f(x)=4+23x-10
|
critical points of f(x)=(x+5)^{2/3}
|
critical\:points\:f(x)=(x+5)^{\frac{2}{3}}
|
inverse of f(x)=e^{234-10}34-1
|
inverse\:f(x)=e^{234-10}34-1
|
inverse of f(x)=(x-4)/(x+7)
|
inverse\:f(x)=\frac{x-4}{x+7}
|
inverse of f(x)=2(x-1)^3+1/2
|
inverse\:f(x)=2(x-1)^{3}+\frac{1}{2}
|
inverse of y=(x+4)/(x-6)
|
inverse\:y=\frac{x+4}{x-6}
|
inverse of f(x)=e^{3x+2}-5
|
inverse\:f(x)=e^{3x+2}-5
|
inverse of 310x^2+155x
|
inverse\:310x^{2}+155x
|
inverse of f(x)=(-x+5)/(-2x-4)
|
inverse\:f(x)=\frac{-x+5}{-2x-4}
|
inverse of f(x)=(arccos(2x))/4+pi
|
inverse\:f(x)=\frac{\arccos(2x)}{4}+π
|
inverse of y=-23x+9
|
inverse\:y=-23x+9
|
inverse of f(x)=(-2-3x)/(3+3x)
|
inverse\:f(x)=\frac{-2-3x}{3+3x}
|
inverse of f(x)=y=18x-17
|
inverse\:f(x)=y=18x-17
|
inverse of f(x)= x/5 5
|
inverse\:f(x)=\frac{x}{5}5
|
inverse of f(x)=(7x+9)/(x-3)
|
inverse\:f(x)=\frac{7x+9}{x-3}
|
inverse of 40x-34+(-33)(1-x/(0.4))^2
|
inverse\:40x-34+(-33)(1-\frac{x}{0.4})^{2}
|
inverse of f(x)=log_{4}(2x+4)
|
inverse\:f(x)=\log_{4}(2x+4)
|
inverse of 1+sin(2t)
|
inverse\:1+\sin(2t)
|
inverse of y=-2(x-1)^2+5
|
inverse\:y=-2(x-1)^{2}+5
|
inverse of f(x)=(7x+9)/(x-2)
|
inverse\:f(x)=\frac{7x+9}{x-2}
|
inverse of (x+4)/(x+12)
|
inverse\:\frac{x+4}{x+12}
|
inverse of sqrt(1.491w)
|
inverse\:\sqrt{1.491w}
|
inverse of (1-x)/(x-3)
|
inverse\:\frac{1-x}{x-3}
|
domain of f(x)=(x+3)/(4-sqrt(x^2-9))
|
domain\:f(x)=\frac{x+3}{4-\sqrt{x^{2}-9}}
|
inverse of 2/((s^2+1)(s^2+2))
|
inverse\:\frac{2}{(s^{2}+1)(s^{2}+2)}
|
inverse of e^{2x-1}-3
|
inverse\:e^{2x-1}-3
|
inverse of f(x)=(7x+9)/(x-4)
|
inverse\:f(x)=\frac{7x+9}{x-4}
|
inverse of y=14-x^2
|
inverse\:y=14-x^{2}
|
inverse of P(t)=(100000)/(100+900e^{-t)}
|
inverse\:P(t)=\frac{100000}{100+900e^{-t}}
|
inverse of f(x)= 3/pi arccos(x)
|
inverse\:f(x)=\frac{3}{π}\arccos(x)
|
inverse of y=(5x-4)/(2x-3)
|
inverse\:y=\frac{5x-4}{2x-3}
|
inverse of 3^{(x+7)}+2
|
inverse\:3^{(x+7)}+2
|
domain of f(x)=(x-3)/(x^2-9)
|
domain\:f(x)=\frac{x-3}{x^{2}-9}
|
inverse of f(x)=f(x)=-8-5x
|
inverse\:f(x)=f(x)=-8-5x
|
inverse of+z/((z+1)^2)
|
inverse\:+\frac{z}{(z+1)^{2}}
|
inverse of [2,-3,-5,2]
|
inverse\:[2,-3,-5,2]
|
inverse of f(x)=((x+2))/((x+7))
|
inverse\:f(x)=\frac{(x+2)}{(x+7)}
|
inverse of f(x)=420+0.75n
|
inverse\:f(x)=420+0.75n
|
inverse of y=1.6x+1.9(50-x)
|
inverse\:y=1.6x+1.9(50-x)
|
inverse of d/d arctan(7x+10)
|
inverse\:\frac{d}{d}\arctan(7x+10)
|
inverse of f(x)=((6y+2))/((2y+3))
|
inverse\:f(x)=\frac{(6y+2)}{(2y+3)}
|
inverse of (2.5e^{-1.7x}+7),x=0.3
|
inverse\:(2.5e^{-1.7x}+7),x=0.3
|
domain of-6sqrt(x)
|
domain\:-6\sqrt{x}
|
inverse of g(x)=((6x))/((x-1))
|
inverse\:g(x)=\frac{(6x)}{(x-1)}
|
inverse of 2/3 x-4
|
inverse\:\frac{2}{3}x-4
|
inverse of f(x)=((5+\sqrt[5]{x}-3))/4
|
inverse\:f(x)=\frac{(5+\sqrt[5]{x}-3)}{4}
|
inverse of f(x)=4sin(pi/2 (x))-1
|
inverse\:f(x)=4\sin(\frac{π}{2}(x))-1
|
inverse of y=(5x)/(8x-3)
|
inverse\:y=\frac{5x}{8x-3}
|
inverse of y=-x^2+2x+3
|
inverse\:y=-x^{2}+2x+3
|
inverse of (5x-3)/(2+x)
|
inverse\:\frac{5x-3}{2+x}
|
inverse of (s+1)/(s^2-4s+13)
|
inverse\:\frac{s+1}{s^{2}-4s+13}
|
inverse of y=(2x)/(3x-5)
|
inverse\:y=\frac{2x}{3x-5}
|
inverse of f(x)=1-2^{-x+1}
|
inverse\:f(x)=1-2^{-x+1}
|
midpoint (-1,-3)(4,-6)
|
midpoint\:(-1,-3)(4,-6)
|
intercepts of f(x)=y=x^2-4x+3
|
intercepts\:f(x)=y=x^{2}-4x+3
|
inverse of f(x)=ln(7-4x)
|
inverse\:f(x)=\ln(7-4x)
|
inverse of y=0.2sin(x)
|
inverse\:y=0.2\sin(x)
|
inverse of f(x)= 1/(2x)+1/2
|
inverse\:f(x)=\frac{1}{2x}+\frac{1}{2}
|
inverse of y=-3x^2+1
|
inverse\:y=-3x^{2}+1
|
inverse of f(x)=((2x^2-1))/(3x)
|
inverse\:f(x)=\frac{(2x^{2}-1)}{3x}
|
inverse of y=-3x^2+3
|
inverse\:y=-3x^{2}+3
|
inverse of (2e^x)^5
|
inverse\:(2e^{x})^{5}
|
inverse of sqrt(5x-1)
|
inverse\:\sqrt{5x-1}
|
inverse of f(x)=y= 7/(x-4)
|
inverse\:f(x)=y=\frac{7}{x-4}
|
inverse of f(x)= 2/(4x^2-1)
|
inverse\:f(x)=\frac{2}{4x^{2}-1}
|
range of f(x)=(2x-4)/(x^2+x-2)
|
range\:f(x)=\frac{2x-4}{x^{2}+x-2}
|
inverse of sqrt(5x-4)
|
inverse\:\sqrt{5x-4}
|